Commit a1226c51 authored by Tobias Meuser's avatar Tobias Meuser
Browse files

First really working version for adhoc

parent 323dda39
......@@ -19,7 +19,7 @@
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.vector;
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data;
import java.util.Arrays;
import java.util.HashMap;
......
......@@ -22,9 +22,10 @@
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import de.tudarmstadt.maki.simonstrator.api.Time;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.vector.TemporalDependencyMatrix;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
......@@ -36,6 +37,7 @@ import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.Road
public abstract class VectoralProperty implements RoadProperty, Cloneable {
private static final boolean TRIM_PROBABILITIES = false;
private static final double MINIMAL_PROBABILITY = 0.0001;
private static Map<DeviationIdentifier, Double> _requiredStandardDeviation = new HashMap<>();
private final Location _location;
private final RoadNetworkEdge _edge;
......@@ -77,7 +79,17 @@ public abstract class VectoralProperty implements RoadProperty, Cloneable {
}
} else {
Arrays.fill(_valueProbabilities, 0);
_valueProbabilities[(int) pMean] = 1;
_valueProbabilities[(int) Math.round(pMean)] = 1;
// int lowerMean = (int) Math.floor(pMean);
// int higherMean = (int) Math.ceil(pMean);
// double difference = pMean - lowerMean;
//
// _valueProbabilities[lowerMean] = 1 - difference;
//
// if (lowerMean != higherMean) {
// _valueProbabilities[higherMean] = difference;
// }
}
}
......@@ -131,6 +143,8 @@ public abstract class VectoralProperty implements RoadProperty, Cloneable {
return getValueAtIndex(getMostProbableIndex());
}
public abstract int getIndexForValue(Object pValue);
public abstract TemporalDependencyMatrix getDependencyMatrix();
@Override
......@@ -201,4 +215,124 @@ public abstract class VectoralProperty implements RoadProperty, Cloneable {
return result;
}
public void set(int pIndex, double pAccuracy, ProbabilityDistribution pDist) {
switch (pDist) {
case SIMPLE:
setSimple(pIndex, pAccuracy);
break;
case GAUSSIAN:
setGaussianWithAccuracy(pIndex, pAccuracy);
break;
default:
throw new AssertionError("Unknown ProbablilityDistribution " + pDist);
}
}
public void setSimple(int pIndex, double pAccuracy) {
double[] valueProbabilities = getValueProbabilities();
Arrays.fill(valueProbabilities, 0);
int index = (int) (pIndex);
valueProbabilities[index] += pAccuracy;
int distance = 1;
if (index + distance < valueProbabilities.length) {
valueProbabilities[index + distance] += (1 - pAccuracy) / 2.0;
} else {
valueProbabilities[index - distance] += (1 - pAccuracy) / 2.0;
}
if (index - 1 >= 1) {
valueProbabilities[index - distance] += (1 - pAccuracy) / 2.0;
} else {
valueProbabilities[index + distance] += (1 - pAccuracy) / 2.0;
}
}
public void setGaussianWithAccuracy(double pValue, double pAccuracy) {
double deviation = determineCorrectDeviation((int) pValue, pAccuracy);
setGaussianProbabilities(pValue, deviation);
}
public void setGaussian(double pIndex, double pDeviation) {
setGaussianProbabilities(pIndex, pDeviation);
}
public double determineCorrectDeviation(int pIndex, double pAccuracy) {
DeviationIdentifier identifier = new DeviationIdentifier(getClass(), pIndex, pAccuracy);
if (!_requiredStandardDeviation.containsKey(identifier)) {
if (pAccuracy < 1) {
VectoralProperty vectoralProperty = clone();
double deviation = 10;
boolean reduceChange = false;
double currentChange = deviation / 2;
do {
vectoralProperty.setGaussian(pIndex, deviation);
if (vectoralProperty.getProbabilityForIndex((int) pIndex) > pAccuracy) {
deviation += currentChange;
} else {
deviation -= currentChange;
reduceChange = true;
}
if (reduceChange) {
currentChange /= 2.0;
}
} while (Math.round(vectoralProperty.getProbabilityForIndex(pIndex) * 10000) != Math
.round(pAccuracy * 10000));
_requiredStandardDeviation.put(identifier, deviation);
} else {
_requiredStandardDeviation.put(identifier, 0d);
}
}
return _requiredStandardDeviation.get(identifier);
}
public abstract int getDefaultIndex();
private class DeviationIdentifier {
private Class<? extends VectoralProperty> _propertyClass;
private int _index;
private double _accuracy;
public DeviationIdentifier(Class<? extends VectoralProperty> pPropertyClass, int pIndex, double pAccuracy) {
_propertyClass = pPropertyClass;
_index = pIndex;
_accuracy = pAccuracy;
}
public Class<? extends VectoralProperty> getPropertyClass() {
return _propertyClass;
}
public int getIndex() {
return _index;
}
public double getAccuracy() {
return _accuracy;
}
@Override
public int hashCode() {
return _index * Double.hashCode(_accuracy);
}
@Override
public boolean equals(Object pObj) {
if (pObj instanceof DeviationIdentifier) {
DeviationIdentifier identifier = (DeviationIdentifier) pObj;
return _propertyClass.equals(identifier.getPropertyClass()) && _index == identifier.getIndex()
&& _accuracy == identifier.getAccuracy();
}
return super.equals(pObj);
}
}
}
......@@ -19,7 +19,7 @@
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data;
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam;
/**
* @author Tobias Meuser (tobias.meuser@kom.tu-darmstadt.de)
......
......@@ -19,9 +19,11 @@
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data;
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam;
import de.tudarmstadt.maki.simonstrator.api.Time;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.EnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.RoadProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
......@@ -57,6 +59,10 @@ public class JamProperty implements RoadProperty {
_averageSpeed = pAverageSpeed;
}
public void resetDetectionDate() {
_detectionDate = Time.getCurrentTime();
}
@Override
public long getDetectionDate() {
return _detectionDate;
......
......@@ -19,14 +19,15 @@
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data;
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import de.tudarmstadt.maki.simonstrator.api.Time;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.vector.TemporalDependencyMatrix;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.EnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.NumericVectoralProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.ProbabilityDistribution;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.TemporalDependencyMatrix;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
......@@ -37,9 +38,10 @@ import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.Road
*/
public class VectoralJamProperty extends NumericVectoralProperty {
public static final double SCALING = 6;
private static final int DIMENSIONS = 10;
private static final int DIMENSIONS = 15;
private static Map<Double, Double> _requiredStandardDeviation = new HashMap<>();
// private static Map<Double, Double> _requiredStandardDeviation = new
// HashMap<>();
private static TemporalDependencyMatrix _temporalDependencyMatrix;
public VectoralJamProperty(Location pLocation, RoadNetworkEdge pEdge) {
......@@ -62,43 +64,46 @@ public class VectoralJamProperty extends NumericVectoralProperty {
public void setSpeed(double pSpeed, double pAccuracy, ProbabilityDistribution pDist) {
switch (pDist) {
case SIMPLE:
setSimpleSpeed(pSpeed, pAccuracy);
break;
throw new AssertionError("Currently not to be used!");
// setSimple((int) (pSpeed / VectoralJamProperty.SCALING),
// pAccuracy);
// break;
case GAUSSIAN:
setGaussianSpeedWithAccuracy(pSpeed, pAccuracy);
setGaussianWithAccuracy(pSpeed / VectoralJamProperty.SCALING, pAccuracy);
break;
default:
throw new AssertionError("Unknown ProbablilityDistribution " + pDist);
}
}
private void setSimpleSpeed(double pSpeed, double pAccuracy) {
double[] valueProbabilities = getValueProbabilities();
Arrays.fill(valueProbabilities, 0);
int index = (int) (pSpeed / SCALING);
valueProbabilities[index] += pAccuracy;
if (index + 1 < valueProbabilities.length) {
valueProbabilities[index + 1] += (1 - pAccuracy) / 2.0;
} else {
valueProbabilities[index - 1] += (1 - pAccuracy) / 2.0;
}
if (index - 1 >= 1) {
valueProbabilities[index - 1] += (1 - pAccuracy) / 2.0;
} else {
valueProbabilities[index + 1] += (1 - pAccuracy) / 2.0;
}
}
public void setGaussianSpeedWithAccuracy(double pSpeed, double pAccuracy) {
double deviation = determineCorrectDeviation(pSpeed, pAccuracy);
setGaussianProbabilities(pSpeed / SCALING, deviation / SCALING);
}
public void setGaussianSpeed(double pSpeed, double pDeviation) {
setGaussianProbabilities(pSpeed / SCALING, pDeviation / SCALING);
}
// private void setSimpleSpeed(double pSpeed, double pAccuracy) {
// double[] valueProbabilities = getValueProbabilities();
// Arrays.fill(valueProbabilities, 0);
// int index = (int) (pSpeed / SCALING);
// valueProbabilities[index] += pAccuracy;
//
// if (index + 1 < valueProbabilities.length) {
// valueProbabilities[index + 1] += (1 - pAccuracy) / 2.0;
// } else {
// valueProbabilities[index - 1] += (1 - pAccuracy) / 2.0;
// }
//
// if (index - 1 >= 1) {
// valueProbabilities[index - 1] += (1 - pAccuracy) / 2.0;
// } else {
// valueProbabilities[index + 1] += (1 - pAccuracy) / 2.0;
// }
// }
//
// public void setGaussianSpeedWithAccuracy(double pSpeed, double pAccuracy)
// {
// double deviation = determineCorrectDeviation(pSpeed, pAccuracy);
// setGaussianProbabilities(pSpeed / SCALING, deviation / SCALING);
// }
//
// public void setGaussianSpeed(double pSpeed, double pDeviation) {
// setGaussianProbabilities(pSpeed / SCALING, pDeviation / SCALING);
// }
@Override
public VectoralJamProperty clone() {
......@@ -123,6 +128,14 @@ public class VectoralJamProperty extends NumericVectoralProperty {
return pIndex * SCALING;
}
@Override
public int getIndexForValue(Object pValue) {
if (pValue instanceof Number) {
return (int) (((Number) pValue).doubleValue() * SCALING);
}
throw new AssertionError("Unknown value!");
}
@Override
public TemporalDependencyMatrix getDependencyMatrix() {
if (_temporalDependencyMatrix == null) {
......@@ -168,8 +181,8 @@ public class VectoralJamProperty extends NumericVectoralProperty {
double speed = getExpectation();
if (speed < (((int) (originalMaxSpeed / VectoralJamProperty.SCALING)) * VectoralJamProperty.SCALING)
* 0.375) {
if (speed < (((int) (originalMaxSpeed * 0.375 / VectoralJamProperty.SCALING))
* VectoralJamProperty.SCALING)) {
return true;
}
}
......@@ -195,37 +208,44 @@ public class VectoralJamProperty extends NumericVectoralProperty {
return super.equals(pObj);
}
public double determineCorrectDeviation(double speed, double pAccuracy) {
if (!_requiredStandardDeviation.containsKey(speed)) {
if (pAccuracy < 1) {
VectoralJamProperty vectoralJamProperty = new VectoralJamProperty(null, null);
double deviation = 10;
boolean reduceChange = false;
double currentChange = deviation / 2;
do {
vectoralJamProperty.setGaussianSpeed(speed, deviation);
if (vectoralJamProperty.getProbabilityForValue(speed) > pAccuracy) {
deviation += currentChange;
} else {
deviation -= currentChange;
reduceChange = true;
}
if (reduceChange) {
currentChange /= 2.0;
}
} while (Math.round(vectoralJamProperty.getProbabilityForValue(speed) * 10000) != Math
.round(pAccuracy * 10000));
_requiredStandardDeviation.put(speed, deviation);
} else {
_requiredStandardDeviation.put(speed, 0d);
}
}
return _requiredStandardDeviation.get(speed);
}
@Override
public int getDefaultIndex() {
return (int) (RoadNetworkEdge.getCorrespondingState(getEdge().getOriginalMaxSpeed()) / SCALING);
}
// public double determineCorrectDeviation(double speed, double pAccuracy) {
// if (!_requiredStandardDeviation.containsKey(speed)) {
// if (pAccuracy < 1) {
// VectoralJamProperty vectoralJamProperty = new VectoralJamProperty(null,
// null);
//
// double deviation = 10;
//
// boolean reduceChange = false;
// double currentChange = deviation / 2;
//
// do {
// vectoralJamProperty.setGaussianSpeed(speed, deviation);
// if (vectoralJamProperty.getProbabilityForValue(speed) > pAccuracy) {
// deviation += currentChange;
// } else {
// deviation -= currentChange;
// reduceChange = true;
// }
//
// if (reduceChange) {
// currentChange /= 2.0;
// }
// } while (Math.round(vectoralJamProperty.getProbabilityForValue(speed) *
// 10000) != Math
// .round(pAccuracy * 10000));
//
// _requiredStandardDeviation.put(speed, deviation);
// } else {
// _requiredStandardDeviation.put(speed, 0d);
// }
// }
//
// return _requiredStandardDeviation.get(speed);
// }
}
\ No newline at end of file
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of Simonstrator.KOM.
*
* Simonstrator.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.measurement;
import java.util.HashMap;
import java.util.Map;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.ProbabilityDistribution;
/**
* @author Tobias Meuser (tobias.meuser@kom.tu-darmstadt.de)
* @version 1.0 at 26.04.2018
*
*/
public class MeasurementDistributionTypeContainer {
private static Map<Class<?>, ProbabilityDistribution> _knownDistributions = new HashMap<>();
public static void setDistribution(Class<?> pClass, ProbabilityDistribution pDistribution) {
_knownDistributions.put(pClass, pDistribution);
}
public static ProbabilityDistribution getDistribution(Class<?> pClass) {
return _knownDistributions.get(pClass);
}
}
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of Simonstrator.KOM.
*
* Simonstrator.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.roadcondition;
/**
* @author Tobias Meuser (tobias.meuser@kom.tu-darmstadt.de)
* @version 1.0 at 26.04.2018
*
*/
public enum RoadCondition {
VERY_DRY, DRY, MEDIUM, WET, VERY_WET, FROZEN
}
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of Simonstrator.KOM.
*
* Simonstrator.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.roadcondition;
import de.tudarmstadt.maki.simonstrator.api.Time;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.EnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.RoadProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
/**
* @author Tobias Meuser (tobias.meuser@kom.tu-darmstadt.de)
* @version 1.0 at 27.02.2018
*
*/
public class RoadConditionProperty implements RoadProperty {
private final Location _location;
private final RoadNetworkEdge _edge;
private long _detectionDate;
private RoadCondition _roadCondition;
public RoadConditionProperty(Location pLocation, RoadNetworkEdge pEdge) {
this(pLocation, pEdge, RoadCondition.DRY);
}
public RoadConditionProperty(Location pLocation, RoadNetworkEdge pEdge, RoadCondition pRoadCondition) {
_location = pLocation;
_edge = pEdge;
_detectionDate = Time.getCurrentTime();
_roadCondition = pRoadCondition;
}
@Override
public long getDetectionDate() {
return _detectionDate;
}
@Override
public Location getLocation() {
return _location;
}
@Override
public RoadNetworkEdge getEdge() {
return _edge;
}
public RoadCondition getRoadCondition() {
return _roadCondition;
}
public void setRoadCondition(RoadCondition pRoadCondition) {
_roadCondition = pRoadCondition;
}
@Override
public EnvironmentProperty getDefaultProperty() {
return new RoadConditionProperty(_location, _edge, RoadCondition.DRY);
}
}
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of Simonstrator.KOM.
*
* Simonstrator.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.roadcondition;
import java.util.Arrays;
import de.tudarmstadt.maki.simonstrator.api.Time;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.EnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.ProbabilityDistribution;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.TemporalDependencyMatrix;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.JamInformationContainer;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
/**
* @author Tobias Meuser (tobias.meuser@kom.tu-darmstadt.de)
* @version 1.0 at 12.04.2018
*
*/
public class VectoralRoadConditionProperty extends VectoralProperty {
private static final int DIMENSIONS = 6;
private static TemporalDependencyMatrix _temporalDependencyMatrix;
public VectoralRoadConditionProperty(Location pLocation, RoadNetworkEdge pEdge) {
super(pLocation, pEdge, DIMENSIONS);
}
/**
*
*/
public VectoralRoadConditionProperty() {
this(null, null);
}
public void setConditon(RoadCondition pCondition, double pAccuracy, ProbabilityDistribution pDist) {
switch (pDist) {
case SIMPLE:
setSimple(pCondition.ordinal(), pAccuracy);
break;
case GAUSSIAN:
setGaussianWithAccuracy(pCondition.ordinal(), pAccuracy);
break;
default:
throw new AssertionError("Unknown ProbablilityDistribution " + pDist);
}
}
@Override
public VectoralRoadConditionProperty clone() {
VectoralRoadConditionProperty vectoralJamProperty = new VectoralRoadConditionProperty(getLocation(), getEdge());
vectoralJamProperty.setProbabilities(Arrays.copyOf(getValueProbabilities(), getValueProbabilities().length));
vectoralJamProperty.setDetectionDate(getDetectionDate());
return vectoralJamProperty;
}
@Override
public VectoralRoadConditionProperty age(long pAge) {
return (VectoralRoadConditionProperty) super.age(pAge);
}
@Override
public EnvironmentProperty getDefaultProperty() {
return new VectoralRoadConditionProperty(getLocation(), getEdge());
}
@Override
public RoadCondition getValueAtIndex(int pIndex) {
return RoadCondition.values()[pIndex];
}
@Override
public int getIndexForValue(Object pValue) {
return RoadCondition.valueOf(pValue.toString()).ordinal();
}
@Override
public TemporalDependencyMatrix getDependencyMatrix() {
if (_temporalDependencyMatrix == null) {
TemporalDependencyMatrix temporalDependencyMatrix = new TemporalDependencyMatrix(DIMENSIONS);
double TEMPORAL_CHANGE = 1 / ((double) JamInformationContainer.EVENT_DURATION / Time.SECOND) / 2.0;
{
double[] probabilities = new double[DIMENSIONS];
probabilities[0] += (1 - (DIMENSIONS - 1) * TEMPORAL_CHANGE);
for (int x = 1; x < DIMENSIONS - 1; x++) {
probabilities[x] += TEMPORAL_CHANGE;
}
temporalDependencyMatrix.setTransitionProbability(0, probabilities);
}
for (int x = 1; x < DIMENSIONS; x++) {
double[] probabilities = new double[DIMENSIONS];
if (x > 1) {
probabilities[x - 1] += TEMPORAL_CHANGE;
} else {
probabilities[x + 1] += TEMPORAL_CHANGE;
}
if (x < DIMENSIONS - 1) {
probabilities[x + 1] += TEMPORAL_CHANGE;
} else {
probabilities[x - 1] += TEMPORAL_CHANGE;
}
probabilities[x] += (1 - 2 * TEMPORAL_CHANGE);
temporalDependencyMatrix.setTransitionProbability(x, probabilities);
}
_temporalDependencyMatrix = temporalDependencyMatrix;
}
return _temporalDependencyMatrix;
}
public double getProbabilityForValue(Object pValue) {
if (pValue instanceof RoadCondition) {
RoadCondition value = (RoadCondition) pValue;
int index = value.ordinal();
return getValueProbabilities()[index];
}
return 0;
}
@Override
public int hashCode() {
return getMostProbableValue().hashCode();
}
@Override
public boolean equals(Object pObj) {
if (pObj instanceof VectoralRoadConditionProperty) {
VectoralRoadConditionProperty property = (VectoralRoadConditionProperty) pObj;
if (property.getMostProbableValue().equals(getMostProbableValue())) {
return true;
}
return false;
}
return super.equals(pObj);
}
@Override
public int getDefaultIndex() {
return 0;
}
}
\ No newline at end of file
......@@ -29,8 +29,8 @@ import de.tudarmstadt.maki.simonstrator.api.Host;
import de.tudarmstadt.maki.simonstrator.api.Randoms;
import de.tudarmstadt.maki.simonstrator.api.component.ComponentNotAvailableException;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.EnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.JamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.RoadProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.JamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.sis.SiSComponent;
import de.tudarmstadt.maki.simonstrator.api.component.sis.SiSRequest;
......
......@@ -29,10 +29,11 @@ import de.tudarmstadt.maki.simonstrator.api.Host;
import de.tudarmstadt.maki.simonstrator.api.Randoms;
import de.tudarmstadt.maki.simonstrator.api.component.ComponentNotAvailableException;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.EnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.JamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.ProbabilityDistribution;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.RoadProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralJamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.JamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.VectoralJamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.measurement.MeasurementDistributionTypeContainer;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.sis.SiSComponent;
import de.tudarmstadt.maki.simonstrator.api.component.sis.SiSRequest;
......@@ -53,20 +54,28 @@ public class VectoralJamEnvironmentSensorPlugin implements EnvironmentSensorPlug
private double _accuracy;
private final double _originalAccuracy;
private final double _maxDeviation;
private static Random _random = Randoms.getRandom(VectoralJamEnvironmentSensorPlugin.class);
private static Random _accuracyRandom = Randoms.getRandom(VectoralJamEnvironmentSensorPlugin.class + "Accuracy");
private ProbabilityDistribution _probabilityDistribution = ProbabilityDistribution.SIMPLE;
@XMLConfigurableConstructor({ "accuracy", "dist_type", "max_deviation" })
public VectoralJamEnvironmentSensorPlugin(double pAccuracy, String pDist, double pMaxDeviation) {
_originalAccuracy = pAccuracy;
_maxDeviation = pMaxDeviation;
double deviation = pMaxDeviation * pAccuracy;
int upperBound = 1;
double lowerBound = 0.4;
@XMLConfigurableConstructor({ "accuracy" })
public VectoralJamEnvironmentSensorPlugin(double pAccuracy) {
double deviation = 0.2 * pAccuracy;
if (deviation + pAccuracy > 1) {
deviation = 1 - pAccuracy;
if (deviation + pAccuracy > upperBound) {
deviation = upperBound - pAccuracy;
}
if (pAccuracy - deviation < 0.6) {
deviation = pAccuracy - 0.6;
if (pAccuracy - deviation < lowerBound) {
deviation = pAccuracy - lowerBound;
}
double accuracy = pAccuracy + _accuracyRandom.nextGaussian() * deviation;
if (accuracy < pAccuracy - deviation) {
......@@ -76,6 +85,9 @@ public class VectoralJamEnvironmentSensorPlugin implements EnvironmentSensorPlug
accuracy = pAccuracy + deviation;
}
setAccuracy(accuracy);
MeasurementDistributionTypeContainer.setDistribution(VectoralJamProperty.class,
ProbabilityDistribution.valueOf(pDist));
}
@Override
......@@ -107,13 +119,23 @@ public class VectoralJamEnvironmentSensorPlugin implements EnvironmentSensorPlug
}
if (speed == -1) {
speed = (int) (edge.getOriginalMaxSpeed() / VectoralJamProperty.SCALING) * VectoralJamProperty.SCALING;
speed = edge.getOriginalMaxSpeed();
}
double measuredSpeed = measureValue(speed);
VectoralJamProperty vectoralJamProperty = new VectoralJamProperty(location, edge);
vectoralJamProperty.setSpeed(measuredSpeed, _accuracy, _probabilityDistribution);
vectoralJamProperty.setSpeed(measuredSpeed, _accuracy,
MeasurementDistributionTypeContainer.getDistribution(VectoralJamProperty.class));
if (edge.getEdgeID().equals("A5.9")) {
for (int i = 0; i < vectoralJamProperty.getValueProbabilities().length; i++) {
if (vectoralJamProperty.getValueProbabilities()[i] > 0.99) {
System.out.println(speed + " --> " + vectoralJamProperty.getMostProbableValue());
}
}
}
List<EnvironmentProperty> properties = new ArrayList<>();
EnvironmentProperty property = vectoralJamProperty;
......@@ -126,7 +148,8 @@ public class VectoralJamEnvironmentSensorPlugin implements EnvironmentSensorPlug
public double measureValue(double pRealSpeed) {
VectoralJamProperty vectoralJamProperty = new VectoralJamProperty(null, null);
vectoralJamProperty.setSpeed(pRealSpeed, _accuracy, _probabilityDistribution);
vectoralJamProperty.setSpeed(pRealSpeed, _accuracy,
MeasurementDistributionTypeContainer.getDistribution(VectoralJamProperty.class));
double nextDouble = _random.nextDouble();
double currentAggregate = 0;
......@@ -143,7 +166,9 @@ public class VectoralJamEnvironmentSensorPlugin implements EnvironmentSensorPlug
@Override
public VectoralJamEnvironmentSensorPlugin clone() throws CloneNotSupportedException {
return new VectoralJamEnvironmentSensorPlugin(_accuracy);
return new VectoralJamEnvironmentSensorPlugin(_originalAccuracy,
MeasurementDistributionTypeContainer.getDistribution(VectoralJamProperty.class).toString(),
_maxDeviation);
}
public void setAccuracy(double pAccuracy) {
......
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of Simonstrator.KOM.
*
* Simonstrator.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.plugin;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import de.tudarmstadt.maki.simonstrator.api.Host;
import de.tudarmstadt.maki.simonstrator.api.Randoms;
import de.tudarmstadt.maki.simonstrator.api.component.ComponentNotAvailableException;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.EnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.ProbabilityDistribution;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.RoadProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.JamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.VectoralJamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.sis.SiSComponent;
import de.tudarmstadt.maki.simonstrator.api.component.sis.SiSRequest;
import de.tudarmstadt.maki.simonstrator.api.component.sis.exception.InformationNotAvailableException;
import de.tudarmstadt.maki.simonstrator.api.component.sis.type.SiSTypes;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
import de.tudarmstadt.maki.simonstrator.api.util.XMLConfigurableConstructor;
/**
* @author Tobias Meuser (tobias.meuser@kom.tu-darmstadt.de)
* @version 1.0 at 27.02.2018
*
*/
public class VectoralRoadConditionEnvironmentSensorPlugin implements EnvironmentSensorPlugin {
private Host _host;
private SiSComponent _sis;
private double _accuracy;
private static Random _random = Randoms.getRandom(VectoralRoadConditionEnvironmentSensorPlugin.class);
private static Random _accuracyRandom = Randoms.getRandom(VectoralRoadConditionEnvironmentSensorPlugin.class + "Accuracy");
private ProbabilityDistribution _probabilityDistribution = ProbabilityDistribution.SIMPLE;
@XMLConfigurableConstructor({ "accuracy" })
public VectoralRoadConditionEnvironmentSensorPlugin(double pAccuracy) {
double deviation = 0.2 * pAccuracy;
if (deviation + pAccuracy > 1) {
deviation = 1 - pAccuracy;
}
if (pAccuracy - deviation < 0.6) {
deviation = pAccuracy - 0.6;
}
double accuracy = pAccuracy + _accuracyRandom.nextGaussian() * deviation;
if (accuracy < pAccuracy - deviation) {
accuracy = pAccuracy - deviation;
}
if (accuracy > pAccuracy + deviation) {
accuracy = pAccuracy + deviation;
}
setAccuracy(accuracy);
}
@Override
public void setHost(Host pHost) {
_host = pHost;
}
@Override
public List<EnvironmentProperty> getEnvironmentProperties() {
if (_sis == null) {
try {
_sis = _host.getComponent(SiSComponent.class);
} catch (ComponentNotAvailableException e) {
throw new AssertionError("SiS requried!", e);
}
}
try {
RoadNetworkEdge edge = _sis.get().localState(SiSTypes.ROAD_EDGE, SiSRequest.NONE);
Location location = _sis.get().localState(SiSTypes.PHY_LOCATION, SiSRequest.NONE);
double speed = -1;
for (RoadProperty roadProperty : edge.getActiveProperties()) {
if (roadProperty instanceof JamProperty) {
if (((JamProperty) roadProperty).isJammed()) {
speed = ((JamProperty) roadProperty).getAverageSpeed();
}
}
}
if (speed == -1) {
speed = (int) (edge.getOriginalMaxSpeed() / VectoralJamProperty.SCALING) * VectoralJamProperty.SCALING;
}
double measuredSpeed = measureValue(speed);
VectoralJamProperty vectoralJamProperty = new VectoralJamProperty(location, edge);
vectoralJamProperty.setSpeed(measuredSpeed, _accuracy, _probabilityDistribution);
List<EnvironmentProperty> properties = new ArrayList<>();
EnvironmentProperty property = vectoralJamProperty;
properties.add(property);
return properties;
} catch (InformationNotAvailableException e) {
throw new AssertionError(SiSTypes.ROAD_EDGE + " and " + SiSTypes.PHY_LOCATION + " are required!");
}
}
public double measureValue(double pRealSpeed) {
VectoralJamProperty vectoralJamProperty = new VectoralJamProperty(null, null);
vectoralJamProperty.setSpeed(pRealSpeed, _accuracy, _probabilityDistribution);
double nextDouble = _random.nextDouble();
double currentAggregate = 0;
for (int i = 0; i < vectoralJamProperty.getValueProbabilities().length; i++) {
currentAggregate += vectoralJamProperty.getValueProbabilities()[i];
if (currentAggregate > nextDouble) {
return vectoralJamProperty.getValueAtIndex(i);
}
}
throw new AssertionError("Unexpected!");
}
@Override
public VectoralRoadConditionEnvironmentSensorPlugin clone() throws CloneNotSupportedException {
return new VectoralRoadConditionEnvironmentSensorPlugin(_accuracy);
}
public void setAccuracy(double pAccuracy) {
_accuracy = pAccuracy;
}
}
......@@ -32,6 +32,7 @@ import de.tudarmstadt.maki.simonstrator.api.component.pubsub.PubSubComponent;
import de.tudarmstadt.maki.simonstrator.api.component.pubsub.attribute.Attribute;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.LocationBasedEnvironmentProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
/**
* @author Tobias Meuser (tobias.meuser@kom.tu-darmstadt.de)
......@@ -121,6 +122,11 @@ public class EnvironmentInformation<T extends LocationBasedEnvironmentProperty>
T value = pInformation.getAttribute(attribute);
attributes.add(pPubSub.createAttribute(expectedClass, attribute.getAttributeID(), value));
}
attributes.add(
pPubSub.createAttribute(RoadNetworkEdge.class, AvailableInformationAttributes.EDGE.getAttributeID(),
pInformation.getAttribute(AvailableInformationAttributes.EDGE)));
Attribute<EnvironmentInformation> ATTR_VALUE = pPubSub.createAttribute(EnvironmentInformation.class,
AvailableInformationAttributes.VALUE.getAttributeID(), null);
......
......@@ -49,4 +49,10 @@ public class RoadInformation extends EnvironmentInformation<RoadProperty>
return super.getAttribute(pKey);
}
public void copyAttributes(RoadInformation pSrc) {
for (AvailableInformationAttributes attribute : pSrc.getAvailableAttributes()) {
setAttribute(attribute, pSrc.getAttribute(attribute));
}
}
}
......@@ -24,9 +24,9 @@ import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.JamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.RoadProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralJamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.JamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.jam.VectoralJamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.api.EdgeController;
......@@ -81,7 +81,10 @@ public class RoadNetworkEdge {
}
}
public double getCurrentSpeedState() {
/**
* @return
*/
public double getCurrentSpeed() {
double actualSpeed = -1;
JamProperty jamProperty = getJamProperty();
if (jamProperty != null) {
......@@ -89,10 +92,13 @@ public class RoadNetworkEdge {
} else {
actualSpeed = getCorrespondingState(getOriginalMaxSpeed());
}
return actualSpeed;
}
public double getCurrentSpeedState() {
return getCorrespondingState(getCurrentSpeed());
}
public JamProperty getJamProperty() {
List<RoadProperty> activeProperties = getActiveProperties();
for (RoadProperty roadProperty : activeProperties) {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment