Commit 92774550 authored by Simon Luser's avatar Simon Luser
Browse files

new PropagationLossModel

parent 5e9789af
...@@ -121,6 +121,10 @@ public class LogDistancePropagationLossModel extends PropagationLossModel { ...@@ -121,6 +121,10 @@ public class LogDistancePropagationLossModel extends PropagationLossModel {
return exponent; return exponent;
} }
protected double getReferenceLoss() {
return referenceLoss;
}
/** /**
* The lamba and the referenceLoss is depending of the frequency and the * The lamba and the referenceLoss is depending of the frequency and the
* referenceDistance. If one of this values changed, then should be updated * referenceDistance. If one of this values changed, then should be updated
......
package de.tud.kom.p2psim.impl.topology.views.wifi.phy.propagation.loss;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
/**
* A model suited for connections between antennas at heights of 0.5-3m. Defined
* in:
* <p>
* Konstantinou, K., Kang, S., & Tzaras, C. (2007). A measurement-based model for
* mobile-to-mobile UMTS links. IEEE Vehicular Technology Conference, 529–533.
* http://doi.org/10.1109/VETECS.2007.120
* <p>
* The model defines path loss for line of sight (LOS) and non light of sight (NLOS)
* propagation.
* <pre>
* PLOS = 4.62 + 20 * log10(4π/λ) - 2.24ht - 4.9hr + 29.6 * log10(d)
* PNLOS = 20 * log10(4π/λ) - 2 *hr + 40 * log10(d) + C
*
* C = 0 if dense urban (HB > 18m), -4 else (HB < 12m)
* </pre>
* <p>
* with λ the wavelength, HB average building height, ht and hr the height of
* the transmitting and receiving antenna above ground, d the distance.
* <p>
* The average path loss is estimated as <code>PL = α PLLOS + (1-α)PLNLOS</code>, where
* α is the probability that there is a LOS connection between transmitter and
* receiver.
*
* @author Tim Feuerbach
*/
public class SurreyPropagationLossModel extends LogDistancePropagationLossModel {
private double C = 0;
private double alpha = 0.098601797632;
private double transmitterHeight = 1.6;
private double receiverHeight = 1.6;
/**
* Distance below which the model will always return the TX power.
*/
private double minDistance = 0.5d;
@Override
public double getRxPowerDbm(double txPowerDbm, Location a, Location b) {
return getRxPowerDbm(txPowerDbm, a.distanceTo(b));
}
@Override
public double getRxPowerDbm(double txPowerDbm, double distance) {
if (distance < minDistance) return txPowerDbm;
double pLOS = 4.62 + getReferenceLoss() - 2.24 * transmitterHeight - 4.9 * receiverHeight + 29.6 *
Math.log10(distance);
double pNLOS = getReferenceLoss() - 2 * receiverHeight + 40 * Math.log10(distance) + C;
double loss = alpha * pLOS + (1 - alpha) * pNLOS;
return txPowerDbm - Math.max(0, loss);
}
@Override
public double getDistance(double txPowerDbm, double rxPowerDbm) {
double p = Math.abs(rxPowerDbm - txPowerDbm);
// TODO use less obscure formulation, this one was obtained from Wolfram Alpha by solving for d
return Math.exp((-285379588546205536L * alpha * C - 827600806783996032L * alpha *
receiverHeight - 639250278343500416L * alpha * transmitterHeight + 1318453699083469568L
* alpha + 285379588546205536L * C - 285379588546205536L * p - 570759177092411072L *
receiverHeight + 285379588546205536L * getReferenceLoss()) / (1288963317755749376L *
alpha - 4957551222137499648L));
}
public void setIsUrban(boolean isUrban) {
C = (isUrban) ? 0 : -4;
}
public void setLosProbability(double losProbability) {
this.alpha = losProbability;
}
public void setTransmitterHeight(double transmitterHeight) {
this.transmitterHeight = transmitterHeight;
}
public void setReceiverHeight(double receiverHeight) {
this.receiverHeight = receiverHeight;
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment