/* * Copyright (c) 2005-2010 KOM – Multimedia Communications Lab * * This file is part of PeerfactSim.KOM. * * PeerfactSim.KOM is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * PeerfactSim.KOM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with PeerfactSim.KOM. If not, see . * */ package de.tud.kom.p2psim.impl.topology.views.wifi.phy.propagation.loss; import de.tud.kom.p2psim.api.topology.views.wifi.phy.PropagationLossModel; import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location; /** * * * The formula is: *

* rx = tx - Pr0 - 10 * n * log (d/d0) *

* Pr0: rx power at reference distance d0 (dBm)
* d0: reference distance: 1.0 (m)
* d: distance (m)
* n: the path loss exponent
* tx: tx power (dBm)
* rx: rx power (dBm) * * * This class based on NS3 (src/propagation/model/propagation-loss-model.cc) by * Mathieu Lacage and further extended by * Christoph Muenker. * * @version 1.0, 28.02.2013 */ public class LogDistancePropagationLossModel extends PropagationLossModel { /** * Exponent of the path loss propagation Model. In * "Wireless Communications - Principles and Practices" from Theodore S. * Rappaport different exponents are introduced. To model the propagation * loss of an urban area cellular radio, a value between 2.7 and 3.5 should * be chosen. */ private double exponent = 3.2; /** * The reference distance of the referenceLoss */ private double referenceDistance = 1; /** * Frequency in Hz
* Default 2,4 GHz */ private long frequency = 2400000000l; /** * The wavelength */ private double lambda = ((double) lightspeed) / frequency; /** * The reference Loss */ private double referenceLoss = 20 * Math.log10(4 * Math.PI * referenceDistance / lambda); @Override public double getRxPowerDbm(double txPowerDbm, Location a, Location b) { double distance = a.distanceTo(b); return getRxPowerDbm(txPowerDbm, distance); } @Override public double getRxPowerDbm(double txPowerDbm, double distance) { if (distance <= referenceDistance) { return txPowerDbm; } double pathLoss = 10 * exponent * Math.log10(distance / referenceDistance); double rxc = -this.referenceLoss - pathLoss; return txPowerDbm + rxc; } @Override public double getDistance(double txPowerDbm, double rxPowerDbm) { return Math.pow(10, (rxPowerDbm - txPowerDbm + referenceLoss) / (-10 * exponent)) / referenceDistance; } @Override public void setFrequency(long frequency) { this.frequency = frequency; updatePreComputation(); } public void setReferenceDistance(double referenceDistance) { this.referenceDistance = referenceDistance; updatePreComputation(); } public void setExponent(double exponent) { this.exponent = exponent; } public double getExponent() { return exponent; } /** * The lamba and the referenceLoss is depending of the frequency and the * referenceDistance. If one of this values changed, then should be updated * the pre computed values. */ private void updatePreComputation() { this.lambda = ((double) lightspeed) / frequency; this.referenceLoss = 20 * Math.log10(4 * Math.PI * referenceDistance / lambda); } }