Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Simonstrator
PeerfactSim.KOM
Commits
12e90c74
Commit
12e90c74
authored
Apr 20, 2018
by
Tobias Meuser
Browse files
Current version for Ad-Hoc Networks
parent
fe05dea2
Changes
6
Hide whitespace changes
Inline
Side-by-side
src/de/tud/kom/p2psim/impl/vehicular/caching/DefaultCachingComponent.java
View file @
12e90c74
...
...
@@ -38,6 +38,7 @@ import de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.replacem
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.JamInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkRoute
;
...
...
@@ -178,6 +179,8 @@ implements CachingComponent, ConnectivityListener {
if
(
information
.
hasAttribute
(
AvailableInformationAttributes
.
EDGE
))
{
return
information
.
getAttribute
(
AvailableInformationAttributes
.
EDGE
);
}
else
if
(
information
instanceof
RoadInformation
)
{
return
((
RoadInformation
)
information
).
getEdge
();
}
else
{
return
information
.
getLocation
();
}
...
...
src/de/tud/kom/p2psim/impl/vehicular/caching/decision/AveragingCacheDecisionStrategy.java
0 → 100755
View file @
12e90c74
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of PeerfactSim.KOM.
*
* PeerfactSim.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package
de.tud.kom.p2psim.impl.vehicular.caching.decision
;
import
java.util.List
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.NumericVectoralProperty
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralJamProperty
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation
;
public
class
AveragingCacheDecisionStrategy
implements
CacheDecisionStrategy
{
@Override
public
<
T
extends
PointInformation
>
T
decideOnCorrectInformation
(
List
<
T
>
pSimilarPointInformation
)
{
if
(
pSimilarPointInformation
.
size
()
==
1
)
{
T
decision
=
pSimilarPointInformation
.
get
(
0
);
return
decision
;
}
else
if
(
pSimilarPointInformation
.
size
()
==
0
)
{
return
null
;
}
double
sum
=
0
;
double
count
=
0
;
NumericVectoralProperty
cloned
=
null
;
for
(
T
t
:
pSimilarPointInformation
)
{
RoadInformation
roadInformation
=
((
RoadInformation
)
t
);
NumericVectoralProperty
property
=
(
NumericVectoralProperty
)
roadInformation
.
getValue
();
if
(
cloned
==
null
)
{
cloned
=
property
.
clone
();
}
sum
+=
property
.
getMostProbableValue
();
count
++;
}
double
value
=
sum
/
count
;
if
(
cloned
instanceof
VectoralJamProperty
)
{
((
VectoralJamProperty
)
cloned
).
setSpeed
(((
int
)(
value
/
VectoralJamProperty
.
SCALING
))
*
VectoralJamProperty
.
SCALING
,
0
);
}
else
{
throw
new
AssertionError
(
"Unknown data type "
+
cloned
.
getClass
().
getSimpleName
());
}
return
(
T
)
new
RoadInformation
(
cloned
);
}
}
src/de/tud/kom/p2psim/impl/vehicular/caching/decision/CacheDecisionStrategyType.java
View file @
12e90c74
...
...
@@ -28,7 +28,7 @@ import java.util.Map;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy
;
public
enum
CacheDecisionStrategyType
{
DEFAULT
(
NewestCacheDecisionStrategy
.
class
),
NEWEST
(
NewestCacheDecisionStrategy
.
class
),
TTL
(
TTLbased
CacheDecisionStrategy
.
class
),
MAJORITY
(
MajorityVoting
CacheDecisionStrategy
.
class
),
OPTIMAL
(
OptimalCacheDecisionStrategy
.
class
),
RANDOM
(
RandomCacheDecisionStrategy
.
class
);
DEFAULT
(
NewestCacheDecisionStrategy
.
class
),
NEWEST
(
NewestCacheDecisionStrategy
.
class
),
MAJORITY
(
MajorityVoting
CacheDecisionStrategy
.
class
),
AVERAGING
(
AveragingCacheDecisionStrategy
.
class
),
TTL
(
TTLbased
CacheDecisionStrategy
.
class
),
OPTIMAL
(
OptimalCacheDecisionStrategy
.
class
),
RANDOM
(
RandomCacheDecisionStrategy
.
class
)
,
TTL_VECTOR
(
TTLbasedVectoralCacheDecisionStrategy
.
class
),
MAJORITY_VECTOR
(
MajorityVotingVectoralCacheDecisionStrategy
.
class
)
;
private
final
Class
<?
extends
CacheDecisionStrategy
>
decisionStrategy
;
private
final
Map
<
String
,
String
>
params
=
new
HashMap
<>();
...
...
src/de/tud/kom/p2psim/impl/vehicular/caching/decision/MajorityVotingVectoralCacheDecisionStrategy.java
0 → 100755
View file @
12e90c74
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of PeerfactSim.KOM.
*
* PeerfactSim.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package
de.tud.kom.p2psim.impl.vehicular.caching.decision
;
import
java.util.Arrays
;
import
java.util.List
;
import
de.tudarmstadt.maki.simonstrator.api.Time
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralProperty
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.vector.TemporalDependencyMatrix
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation
;
public
class
MajorityVotingVectoralCacheDecisionStrategy
implements
CacheDecisionStrategy
{
private
static
final
long
SCALING
=
Time
.
SECOND
;
@Override
public
<
T
extends
PointInformation
>
T
decideOnCorrectInformation
(
List
<
T
>
pSimilarPointInformation
)
{
VectoralProperty
currentProperty
=
null
;
long
minTimestamp
=
Long
.
MAX_VALUE
;
long
maxTimestamp
=
0
;
for
(
T
t
:
pSimilarPointInformation
)
{
long
timestamp
=
t
.
getDetectionDate
();
if
(
timestamp
<
minTimestamp
)
{
minTimestamp
=
timestamp
;
}
if
(
timestamp
>
maxTimestamp
)
{
maxTimestamp
=
timestamp
;
}
}
for
(
T
t
:
pSimilarPointInformation
)
{
RoadInformation
roadInformation
=
((
RoadInformation
)
t
);
VectoralProperty
property
=
(
VectoralProperty
)
roadInformation
.
getValue
();
TemporalDependencyMatrix
dependencyMatrix
=
property
.
getDependencyMatrix
();
VectoralProperty
agedProperty
=
property
.
age
((
maxTimestamp
-
property
.
getDetectionDate
())
/
SCALING
,
dependencyMatrix
);
if
(
currentProperty
!=
null
)
{
currentProperty
=
currentProperty
.
combine
(
agedProperty
);
}
else
{
currentProperty
=
agedProperty
;
}
}
TemporalDependencyMatrix
dependencyMatrix
=
currentProperty
.
getDependencyMatrix
();
VectoralProperty
agedProperty
=
currentProperty
.
age
((
Time
.
getCurrentTime
()
-
maxTimestamp
)
/
SCALING
,
dependencyMatrix
);
return
(
T
)
new
RoadInformation
(
agedProperty
);
}
}
src/de/tud/kom/p2psim/impl/vehicular/caching/decision/TTLbasedCacheDecisionStrategy.java
View file @
12e90c74
...
...
@@ -20,6 +20,7 @@
package
de.tud.kom.p2psim.impl.vehicular.caching.decision
;
import
java.util.Arrays
;
import
java.util.HashMap
;
import
java.util.List
;
import
java.util.Map
;
...
...
src/de/tud/kom/p2psim/impl/vehicular/caching/decision/TTLbasedVectoralCacheDecisionStrategy.java
0 → 100755
View file @
12e90c74
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of PeerfactSim.KOM.
*
* PeerfactSim.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package
de.tud.kom.p2psim.impl.vehicular.caching.decision
;
import
java.util.Comparator
;
import
java.util.List
;
import
java.util.Map
;
import
java.util.Map.Entry
;
import
de.tudarmstadt.maki.simonstrator.api.Time
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralProperty
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.vector.TemporalDependencyMatrix
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation
;
import
edu.emory.mathcs.backport.java.util.Collections
;
public
class
TTLbasedVectoralCacheDecisionStrategy
implements
CacheDecisionStrategy
{
private
static
final
long
SCALING
=
Time
.
SECOND
;
private
static
final
double
ACCURACY_FACTOR
=
100000
;
private
double
accuracy
=
1
;
private
double
costWrongKeep
=
1
;
private
double
costWrongChange
=
1
;
private
Object
_lastDecision
=
false
;
public
TTLbasedVectoralCacheDecisionStrategy
(
Map
<
String
,
String
>
pParams
)
{
for
(
Entry
<
String
,
String
>
param
:
pParams
.
entrySet
())
{
switch
(
param
.
getKey
())
{
case
"ACCURACY"
:
accuracy
=
Double
.
valueOf
(
param
.
getValue
());
break
;
case
"COST_RATIO"
:
double
ratio
=
Double
.
valueOf
(
param
.
getValue
());
costWrongChange
=
2
/
(
ratio
+
1
);
costWrongKeep
=
2
-
costWrongChange
;
break
;
default
:
break
;
}
}
}
public
double
getCostWrongChange
()
{
return
costWrongChange
;
}
public
double
getCostWrongKeep
()
{
return
costWrongKeep
;
}
@Override
public
<
T
extends
PointInformation
>
T
decideOnCorrectInformation
(
List
<
T
>
pSimilarPointInformation
)
{
if
(
pSimilarPointInformation
.
size
()
==
1
)
{
T
decision
=
pSimilarPointInformation
.
get
(
0
);
_lastDecision
=
decision
.
getValue
();
return
decision
;
}
else
if
(
pSimilarPointInformation
.
size
()
==
0
)
{
return
null
;
}
Collections
.
sort
(
pSimilarPointInformation
,
new
Comparator
<
T
>()
{
@Override
public
int
compare
(
T
pArg0
,
T
pArg1
)
{
return
Long
.
compare
(
pArg0
.
getDetectionDate
(),
pArg1
.
getDetectionDate
());
}
});
long
minTimestamp
=
Long
.
MAX_VALUE
;
long
maxTimestamp
=
0
;
Object
value
=
pSimilarPointInformation
.
get
(
0
).
getValue
();
boolean
differentValue
=
false
;
for
(
T
t
:
pSimilarPointInformation
)
{
if
(!
t
.
hasAttribute
(
AvailableInformationAttributes
.
TTL
))
{
throw
new
AssertionError
(
"Unable to perform TTL-based majority voting witout TTL"
);
}
long
timestamp
=
t
.
getDetectionDate
();
if
(
timestamp
<
minTimestamp
)
{
minTimestamp
=
timestamp
;
}
if
(
timestamp
>
maxTimestamp
)
{
maxTimestamp
=
timestamp
;
}
if
(!
value
.
equals
(
t
.
getValue
()))
{
differentValue
=
true
;
}
}
if
(
differentValue
)
{
long
difference
=
maxTimestamp
-
minTimestamp
;
if
(
difference
==
0
)
{
return
pSimilarPointInformation
.
get
(
pSimilarPointInformation
.
size
()
-
1
);
}
double
rate
=
difference
/
((
double
)
(
pSimilarPointInformation
.
size
()
-
1
)
*
SCALING
);
long
ttl
=
(
long
)
pSimilarPointInformation
.
get
(
0
).
getAttribute
(
AvailableInformationAttributes
.
TTL
)
/
SCALING
;
rate
=
Math
.
min
(
rate
,
ttl
/
10
);
double
b
=
determineB
(
rate
,
1
-
accuracy
,
ttl
,
costWrongKeep
,
costWrongChange
);
VectoralProperty
currentProperty
=
null
;
for
(
T
t
:
pSimilarPointInformation
)
{
RoadInformation
roadInformation
=
((
RoadInformation
)
t
);
VectoralProperty
property
=
(
VectoralProperty
)
roadInformation
.
getValue
();
double
impact
=
calculateImpact
(
1
-
accuracy
,
ttl
,
t
.
getDetectionDate
()
/
SCALING
,
b
,
maxTimestamp
/
SCALING
)
/
(
accuracy
);
TemporalDependencyMatrix
dependencyMatrix
=
property
.
getDependencyMatrix
();
dependencyMatrix
=
dependencyMatrix
.
age
((
maxTimestamp
-
property
.
getDetectionDate
())
/
SCALING
);
dependencyMatrix
=
modifyDependencyMatrix
(
dependencyMatrix
,
impact
);
VectoralProperty
agedProperty
=
property
.
age
(
1
,
dependencyMatrix
);
if
(
currentProperty
!=
null
)
{
currentProperty
=
currentProperty
.
combine
(
agedProperty
);
}
else
{
currentProperty
=
agedProperty
;
}
}
return
(
T
)
new
RoadInformation
(
currentProperty
);
}
else
{
maxTimestamp
=
-
1
;
T
maxFitting
=
null
;
for
(
T
t
:
pSimilarPointInformation
)
{
long
timestamp
=
(
long
)
t
.
getAttribute
(
AvailableInformationAttributes
.
TTL
);
if
(
timestamp
>
maxTimestamp
)
{
maxTimestamp
=
timestamp
;
maxFitting
=
t
;
}
}
_lastDecision
=
maxFitting
.
getValue
();
return
maxFitting
;
}
}
private
TemporalDependencyMatrix
modifyDependencyMatrix
(
TemporalDependencyMatrix
pDependencyMatrix
,
double
pImpact
)
{
TemporalDependencyMatrix
result
=
pDependencyMatrix
.
clone
();
double
[][]
dependencies
=
result
.
getDependencies
();
for
(
int
i
=
0
;
i
<
dependencies
.
length
;
i
++)
{
double
finalPercentages
=
1.0
/
dependencies
[
i
].
length
;
for
(
int
j
=
0
;
j
<
dependencies
[
i
].
length
;
j
++)
{
dependencies
[
i
][
j
]
=
finalPercentages
+
(
dependencies
[
i
][
j
]
-
finalPercentages
)
*
pImpact
;
}
}
return
result
;
}
public
double
calculateImpact
(
double
errorProbability
,
long
ttl
,
long
time
,
double
b
,
long
maxTimestamp
)
{
long
age
=
maxTimestamp
-
time
;
if
(
errorProbability
==
0
)
{
if
(
time
==
maxTimestamp
)
{
return
1
;
}
else
{
return
0
;
}
}
else
if
(
errorProbability
==
1
)
{
return
1
;
}
else
if
(
errorProbability
==
0.5
)
{
return
(
errorProbability
-
1
)
/
ttl
*
age
+
errorProbability
;
}
else
if
(
b
==
Double
.
NEGATIVE_INFINITY
)
{
if
(
time
==
maxTimestamp
)
{
return
1
;
}
else
{
return
0
;
}
}
return
(
1
-
errorProbability
)
*
(
Math
.
exp
(
b
*
age
)
-
Math
.
exp
(
b
*
ttl
))
/
(
1
-
Math
.
exp
(
b
*
ttl
));
}
public
double
getChangeProbability
(
long
ttl
)
{
return
1
-
Math
.
pow
(
0.5
,
1
/
(
double
)
ttl
);
}
public
int
getOptimalMessageAmountForSwitch
(
double
changeProbability
,
double
errorProbability
,
double
costSlow
,
double
costFast
)
{
return
(
int
)
Math
.
round
(
Math
.
log
(-
changeProbability
/
Math
.
log
(
errorProbability
)
*
costSlow
/
costFast
)
/
Math
.
log
(
errorProbability
));
}
public
double
determineB
(
double
rate
,
double
errorProbability
,
long
ttl
,
double
costSlow
,
double
costFast
)
{
return
determineB
(
rate
,
errorProbability
,
ttl
,
costSlow
,
costFast
,
1
);
}
public
double
determineB
(
double
rate
,
double
errorProbability
,
long
ttl
,
double
costSlow
,
double
costFast
,
int
reversed
)
{
if
(
errorProbability
==
0
||
errorProbability
==
1
||
errorProbability
==
0.5
)
{
return
Double
.
NaN
;
}
double
b
;
double
p_c
=
getChangeProbability
((
long
)
(
ttl
/
rate
));
int
optimalAmount
=
getOptimalMessageAmountForSwitch
(
p_c
,
errorProbability
,
costSlow
,
costFast
);
if
(
optimalAmount
==
1
)
{
return
Double
.
NEGATIVE_INFINITY
;
}
boolean
first
=
true
;
double
leftSide
;
double
rightSide
;
double
step
=
5
;
if
(
errorProbability
<
0.5
)
{
b
=
-
2
*
step
*
reversed
;
}
else
{
b
=
2
*
step
*
reversed
;
}
int
similar
=
0
;
double
lastDifference
=
-
1
;
do
{
leftSide
=
calculateWeightingForOldState
(
optimalAmount
,
rate
,
errorProbability
,
ttl
,
b
);
rightSide
=
calculateWeightingForNewState
(
optimalAmount
,
rate
,
errorProbability
,
ttl
,
b
);
if
(
Math
.
abs
(
Math
.
round
((
rightSide
-
leftSide
)
*
ACCURACY_FACTOR
))
==
lastDifference
)
{
similar
++;
}
else
{
lastDifference
=
Math
.
abs
(
Math
.
round
((
rightSide
-
leftSide
)
*
ACCURACY_FACTOR
));
similar
=
0
;
}
if
(
Double
.
isNaN
(
leftSide
)
||
Double
.
isNaN
(
rightSide
)
||
similar
>
100
)
{
if
(
reversed
!=
-
1
)
{
double
determineB
=
determineB
(
rate
,
errorProbability
,
ttl
,
costSlow
,
costFast
,
-
1
);
if
(!
Double
.
isNaN
(
determineB
))
{
return
determineB
;
}
else
{
return
b
;
}
}
else
{
return
Double
.
NaN
;
}
}
leftSide
=
Math
.
round
(
leftSide
*
ACCURACY_FACTOR
);
rightSide
=
Math
.
round
(
rightSide
*
ACCURACY_FACTOR
);
if
(
leftSide
>
rightSide
)
{
if
(
b
<
0
)
{
b
-=
step
;
if
(!
first
)
{
step
*=
0.5
;
}
}
else
{
b
-=
step
;
step
*=
0.5
;
first
=
false
;
}
}
else
if
(
leftSide
<
rightSide
)
{
if
(
b
>
0
)
{
b
+=
step
;
if
(!
first
)
{
step
*=
0.5
;
}
}
else
{
b
+=
step
;
step
*=
0.5
;
first
=
false
;
}
}
else
{
break
;
}
}
while
(
true
);
return
b
;
}
public
double
calculateWeightingForOldState
(
int
optimalMessageAmount
,
double
rate
,
double
errorProbability
,
long
ttl
,
double
b
)
{
double
impact
=
0
;
for
(
int
a
=
optimalMessageAmount
;
a
<
Math
.
max
(
Math
.
floor
(
ttl
/
rate
),
optimalMessageAmount
+
2
);
a
++)
{
impact
+=
calculateImpact
(
errorProbability
,
ttl
,
Time
.
getCurrentTime
()
/
SCALING
-
(
long
)
Math
.
floor
(
a
*
rate
),
b
,
Time
.
getCurrentTime
()
/
SCALING
);
}
return
impact
;
}
public
double
calculateWeightingForNewState
(
int
optimalMessageAmount
,
double
rate
,
double
errorProbability
,
long
ttl
,
double
b
)
{
double
impact
=
0
;
for
(
int
a
=
0
;
a
<
optimalMessageAmount
;
a
++)
{
impact
+=
calculateImpact
(
errorProbability
,
ttl
,
Time
.
getCurrentTime
()
/
SCALING
-
(
long
)
Math
.
floor
(
a
*
rate
),
b
,
Time
.
getCurrentTime
()
/
SCALING
);
}
return
impact
;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment