Commit 12e90c74 authored by Tobias Meuser's avatar Tobias Meuser
Browse files

Current version for Ad-Hoc Networks

parent fe05dea2
......@@ -38,6 +38,7 @@ import de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.replacem
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.JamInformation;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkEdge;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.roadnetwork.RoadNetworkRoute;
......@@ -178,6 +179,8 @@ implements CachingComponent, ConnectivityListener {
if (information.hasAttribute(AvailableInformationAttributes.EDGE)) {
return information
.getAttribute(AvailableInformationAttributes.EDGE);
} else if (information instanceof RoadInformation) {
return ((RoadInformation) information).getEdge();
} else {
return information.getLocation();
}
......
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of PeerfactSim.KOM.
*
* PeerfactSim.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tud.kom.p2psim.impl.vehicular.caching.decision;
import java.util.List;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.NumericVectoralProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralJamProperty;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation;
public class AveragingCacheDecisionStrategy implements CacheDecisionStrategy {
@Override
public <T extends PointInformation> T decideOnCorrectInformation(
List<T> pSimilarPointInformation) {
if (pSimilarPointInformation.size() == 1) {
T decision = pSimilarPointInformation.get(0);
return decision;
} else if (pSimilarPointInformation.size() == 0) {
return null;
}
double sum = 0;
double count = 0;
NumericVectoralProperty cloned = null;
for (T t : pSimilarPointInformation) {
RoadInformation roadInformation = ((RoadInformation) t);
NumericVectoralProperty property = (NumericVectoralProperty) roadInformation.getValue();
if (cloned == null) {
cloned = property.clone();
}
sum += property.getMostProbableValue();
count++;
}
double value = sum / count;
if (cloned instanceof VectoralJamProperty) {
((VectoralJamProperty) cloned).setSpeed(((int)(value / VectoralJamProperty.SCALING)) * VectoralJamProperty.SCALING, 0);
} else {
throw new AssertionError("Unknown data type " + cloned.getClass().getSimpleName());
}
return (T) new RoadInformation(cloned);
}
}
......@@ -28,7 +28,7 @@ import java.util.Map;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy;
public enum CacheDecisionStrategyType {
DEFAULT(NewestCacheDecisionStrategy.class), NEWEST(NewestCacheDecisionStrategy.class), TTL(TTLbasedCacheDecisionStrategy.class), MAJORITY(MajorityVotingCacheDecisionStrategy.class), OPTIMAL(OptimalCacheDecisionStrategy.class), RANDOM(RandomCacheDecisionStrategy.class);
DEFAULT(NewestCacheDecisionStrategy.class), NEWEST(NewestCacheDecisionStrategy.class), MAJORITY(MajorityVotingCacheDecisionStrategy.class), AVERAGING(AveragingCacheDecisionStrategy.class), TTL(TTLbasedCacheDecisionStrategy.class), OPTIMAL(OptimalCacheDecisionStrategy.class), RANDOM(RandomCacheDecisionStrategy.class), TTL_VECTOR(TTLbasedVectoralCacheDecisionStrategy.class), MAJORITY_VECTOR(MajorityVotingVectoralCacheDecisionStrategy.class);
private final Class<? extends CacheDecisionStrategy> decisionStrategy;
private final Map<String, String> params = new HashMap<>();
......
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of PeerfactSim.KOM.
*
* PeerfactSim.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tud.kom.p2psim.impl.vehicular.caching.decision;
import java.util.Arrays;
import java.util.List;
import de.tudarmstadt.maki.simonstrator.api.Time;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.vector.TemporalDependencyMatrix;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation;
public class MajorityVotingVectoralCacheDecisionStrategy implements CacheDecisionStrategy {
private static final long SCALING = Time.SECOND;
@Override
public <T extends PointInformation> T decideOnCorrectInformation(
List<T> pSimilarPointInformation) {
VectoralProperty currentProperty = null;
long minTimestamp = Long.MAX_VALUE;
long maxTimestamp = 0;
for (T t : pSimilarPointInformation) {
long timestamp = t.getDetectionDate();
if (timestamp < minTimestamp) {
minTimestamp = timestamp;
}
if (timestamp > maxTimestamp) {
maxTimestamp = timestamp;
}
}
for (T t : pSimilarPointInformation) {
RoadInformation roadInformation = ((RoadInformation) t);
VectoralProperty property = (VectoralProperty) roadInformation.getValue();
TemporalDependencyMatrix dependencyMatrix = property.getDependencyMatrix();
VectoralProperty agedProperty = property.age((maxTimestamp - property.getDetectionDate()) / SCALING, dependencyMatrix);
if (currentProperty != null) {
currentProperty = currentProperty.combine(agedProperty);
} else {
currentProperty = agedProperty;
}
}
TemporalDependencyMatrix dependencyMatrix = currentProperty.getDependencyMatrix();
VectoralProperty agedProperty = currentProperty.age((Time.getCurrentTime() - maxTimestamp) / SCALING, dependencyMatrix);
return (T) new RoadInformation(agedProperty);
}
}
......@@ -20,6 +20,7 @@
package de.tud.kom.p2psim.impl.vehicular.caching.decision;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
......
/*
* Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
*
* This file is part of PeerfactSim.KOM.
*
* PeerfactSim.KOM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* PeerfactSim.KOM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PeerfactSim.KOM. If not, see <http://www.gnu.org/licenses/>.
*
*/
package de.tud.kom.p2psim.impl.vehicular.caching.decision;
import java.util.Comparator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import de.tudarmstadt.maki.simonstrator.api.Time;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralProperty;
import de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.vector.TemporalDependencyMatrix;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation;
import de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation;
import edu.emory.mathcs.backport.java.util.Collections;
public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrategy {
private static final long SCALING = Time.SECOND;
private static final double ACCURACY_FACTOR = 100000;
private double accuracy = 1;
private double costWrongKeep = 1;
private double costWrongChange = 1;
private Object _lastDecision = false;
public TTLbasedVectoralCacheDecisionStrategy(Map<String, String> pParams) {
for (Entry<String, String> param : pParams.entrySet()) {
switch (param.getKey()) {
case "ACCURACY":
accuracy = Double.valueOf(param.getValue());
break;
case "COST_RATIO":
double ratio = Double.valueOf(param.getValue());
costWrongChange = 2 / (ratio + 1);
costWrongKeep = 2 - costWrongChange;
break;
default:
break;
}
}
}
public double getCostWrongChange() {
return costWrongChange;
}
public double getCostWrongKeep() {
return costWrongKeep;
}
@Override
public <T extends PointInformation> T decideOnCorrectInformation(
List<T> pSimilarPointInformation) {
if (pSimilarPointInformation.size() == 1) {
T decision = pSimilarPointInformation.get(0);
_lastDecision = decision.getValue();
return decision;
} else if (pSimilarPointInformation.size() == 0) {
return null;
}
Collections.sort(pSimilarPointInformation, new Comparator<T>() {
@Override
public int compare(T pArg0, T pArg1) {
return Long.compare(pArg0.getDetectionDate(), pArg1.getDetectionDate());
}
});
long minTimestamp = Long.MAX_VALUE;
long maxTimestamp = 0;
Object value = pSimilarPointInformation.get(0).getValue();
boolean differentValue = false;
for (T t : pSimilarPointInformation) {
if (!t.hasAttribute(AvailableInformationAttributes.TTL)) {
throw new AssertionError("Unable to perform TTL-based majority voting witout TTL");
}
long timestamp = t.getDetectionDate();
if (timestamp < minTimestamp) {
minTimestamp = timestamp;
}
if (timestamp > maxTimestamp) {
maxTimestamp = timestamp;
}
if (!value.equals(t.getValue())) {
differentValue = true;
}
}
if (differentValue) {
long difference = maxTimestamp - minTimestamp;
if (difference == 0) {
return pSimilarPointInformation.get(pSimilarPointInformation.size() - 1);
}
double rate = difference / ((double) (pSimilarPointInformation.size() - 1) * SCALING);
long ttl = (long)pSimilarPointInformation.get(0).getAttribute(AvailableInformationAttributes.TTL) / SCALING;
rate = Math.min(rate, ttl / 10);
double b = determineB(rate, 1 - accuracy, ttl, costWrongKeep, costWrongChange);
VectoralProperty currentProperty = null;
for (T t : pSimilarPointInformation) {
RoadInformation roadInformation = ((RoadInformation) t);
VectoralProperty property = (VectoralProperty) roadInformation.getValue();
double impact = calculateImpact(1 - accuracy, ttl, t.getDetectionDate() / SCALING, b, maxTimestamp / SCALING) / (accuracy);
TemporalDependencyMatrix dependencyMatrix = property.getDependencyMatrix();
dependencyMatrix = dependencyMatrix.age((maxTimestamp - property.getDetectionDate()) / SCALING);
dependencyMatrix = modifyDependencyMatrix(dependencyMatrix, impact);
VectoralProperty agedProperty = property.age(1, dependencyMatrix);
if (currentProperty != null) {
currentProperty = currentProperty.combine(agedProperty);
} else {
currentProperty = agedProperty;
}
}
return (T) new RoadInformation(currentProperty);
} else {
maxTimestamp = -1;
T maxFitting = null;
for (T t : pSimilarPointInformation) {
long timestamp = (long) t.getAttribute(AvailableInformationAttributes.TTL);
if (timestamp > maxTimestamp) {
maxTimestamp = timestamp;
maxFitting = t;
}
}
_lastDecision = maxFitting.getValue();
return maxFitting;
}
}
private TemporalDependencyMatrix modifyDependencyMatrix(
TemporalDependencyMatrix pDependencyMatrix, double pImpact) {
TemporalDependencyMatrix result = pDependencyMatrix.clone();
double[][] dependencies = result.getDependencies();
for (int i = 0; i < dependencies.length; i++) {
double finalPercentages = 1.0 / dependencies[i].length;
for (int j = 0; j < dependencies[i].length; j++) {
dependencies[i][j] = finalPercentages + (dependencies[i][j] - finalPercentages) * pImpact;
}
}
return result;
}
public double calculateImpact(double errorProbability, long ttl, long time, double b, long maxTimestamp) {
long age = maxTimestamp - time;
if (errorProbability == 0) {
if (time == maxTimestamp) {
return 1;
} else {
return 0;
}
} else if (errorProbability == 1) {
return 1;
} else if (errorProbability == 0.5) {
return (errorProbability - 1) / ttl * age + errorProbability;
} else if (b == Double.NEGATIVE_INFINITY) {
if (time == maxTimestamp) {
return 1;
} else {
return 0;
}
}
return (1 - errorProbability) * (Math.exp(b * age) - Math.exp(b * ttl)) / (1 - Math.exp(b * ttl));
}
public double getChangeProbability(long ttl) {
return 1 - Math.pow(0.5, 1 / (double) ttl);
}
public int getOptimalMessageAmountForSwitch(double changeProbability, double errorProbability, double costSlow, double costFast) {
return (int) Math.round(Math.log(-changeProbability / Math.log(errorProbability) * costSlow / costFast) / Math.log(errorProbability));
}
public double determineB(double rate, double errorProbability, long ttl, double costSlow, double costFast) {
return determineB(rate, errorProbability, ttl, costSlow, costFast, 1);
}
public double determineB(double rate, double errorProbability, long ttl, double costSlow, double costFast, int reversed) {
if (errorProbability == 0 || errorProbability == 1 || errorProbability == 0.5) {
return Double.NaN;
}
double b;
double p_c = getChangeProbability((long) (ttl / rate));
int optimalAmount = getOptimalMessageAmountForSwitch(p_c, errorProbability, costSlow, costFast);
if (optimalAmount == 1) {
return Double.NEGATIVE_INFINITY;
}
boolean first = true;
double leftSide;
double rightSide;
double step = 5;
if (errorProbability < 0.5) {
b = -2 * step * reversed;
} else {
b = 2 * step * reversed;
}
int similar = 0;
double lastDifference = -1;
do {
leftSide = calculateWeightingForOldState(optimalAmount, rate, errorProbability, ttl, b);
rightSide = calculateWeightingForNewState(optimalAmount, rate, errorProbability, ttl, b);
if (Math.abs(Math.round((rightSide - leftSide) * ACCURACY_FACTOR)) == lastDifference) {
similar++;
} else {
lastDifference = Math.abs(Math.round((rightSide - leftSide) * ACCURACY_FACTOR));
similar = 0;
}
if (Double.isNaN(leftSide) || Double.isNaN(rightSide) || similar > 100) {
if (reversed != -1) {
double determineB = determineB(rate, errorProbability, ttl, costSlow, costFast, -1);
if (!Double.isNaN(determineB)) {
return determineB;
} else {
return b;
}
} else {
return Double.NaN;
}
}
leftSide = Math.round(leftSide * ACCURACY_FACTOR);
rightSide = Math.round(rightSide * ACCURACY_FACTOR);
if (leftSide > rightSide) {
if (b < 0) {
b -= step;
if (!first) {
step *= 0.5;
}
} else {
b -= step;
step *= 0.5;
first = false;
}
} else if (leftSide < rightSide) {
if (b > 0) {
b += step;
if (!first) {
step *= 0.5;
}
} else {
b += step;
step *= 0.5;
first = false;
}
} else {
break;
}
} while (true);
return b;
}
public double calculateWeightingForOldState(int optimalMessageAmount, double rate, double errorProbability, long ttl, double b) {
double impact = 0;
for (int a = optimalMessageAmount; a < Math.max(Math.floor(ttl / rate), optimalMessageAmount + 2); a++) {
impact += calculateImpact(errorProbability, ttl, Time.getCurrentTime() / SCALING - (long)Math.floor(a * rate), b, Time.getCurrentTime() / SCALING);
}
return impact;
}
public double calculateWeightingForNewState(int optimalMessageAmount, double rate, double errorProbability, long ttl, double b) {
double impact = 0;
for (int a = 0; a < optimalMessageAmount; a++) {
impact += calculateImpact(errorProbability, ttl, Time.getCurrentTime() / SCALING - (long)Math.floor(a * rate), b, Time.getCurrentTime() / SCALING);
}
return impact;
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment