Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Simonstrator
PeerfactSim.KOM
Commits
c911a273
Commit
c911a273
authored
May 18, 2018
by
Tobias Meuser
Browse files
Introduced impact separate function
parent
4c122520
Changes
2
Hide whitespace changes
Inline
Side-by-side
src/de/tud/kom/p2psim/impl/vehicular/caching/decision/TTLbasedCacheDecisionStrategy.java
View file @
c911a273
...
...
@@ -36,6 +36,7 @@ import de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.relevance.impl.SimpleQoIBasedImpactFunction
;
public
class
TTLbasedCacheDecisionStrategy
implements
CacheDecisionStrategy
{
private
static
final
long
SCALING
=
Time
.
SECOND
;
...
...
@@ -85,66 +86,36 @@ public class TTLbasedCacheDecisionStrategy implements CacheDecisionStrategy {
}
else
if
(
pSimilarPointInformation
.
size
()
==
0
)
{
return
null
;
}
Collections
.
sort
(
pSimilarPointInformation
,
new
Comparator
<
T
>()
{
@Override
public
int
compare
(
T
pArg0
,
T
pArg1
)
{
return
Long
.
compare
(
pArg0
.
getDetectionDate
(),
pArg1
.
getDetectionDate
());
}
});
long
minTimestamp
=
Long
.
MAX_VALUE
;
long
maxTimestamp
=
0
;
Object
value
=
pSimilarPointInformation
.
get
(
0
).
getValue
();
boolean
differentValue
=
false
;
for
(
T
t
:
pSimilarPointInformation
)
{
if
(!
t
.
hasAttribute
(
AvailableInformationAttributes
.
TTL
))
{
throw
new
AssertionError
(
"Unable to perform TTL-based majority voting witout TTL"
);
}
long
timestamp
=
t
.
getDetectionDate
();
if
(
timestamp
<
minTimestamp
)
{
minTimestamp
=
timestamp
;
}
if
(
timestamp
>
maxTimestamp
)
{
maxTimestamp
=
timestamp
;
}
if
(!
value
.
equals
(
t
.
getValue
()))
{
differentValue
=
true
;
}
}
if
(
differentValue
)
{
long
difference
=
maxTimestamp
-
minTimestamp
;
if
(
difference
==
0
)
{
return
pSimilarPointInformation
.
get
(
pSimilarPointInformation
.
size
()
-
1
);
}
double
rate
=
difference
/
((
double
)
(
pSimilarPointInformation
.
size
()
-
1
)
*
SCALING
);
long
ttl
=
(
long
)
pSimilarPointInformation
.
get
(
0
).
getAttribute
(
AvailableInformationAttributes
.
TTL
)
/
SCALING
;
rate
=
Math
.
min
(
rate
,
ttl
/
10.0
);
double
b
;
if
(
Boolean
.
FALSE
.
equals
(
_lastDecision
))
{
b
=
determineB
(
rate
,
1
-
accuracy
,
ttl
,
costWrongKeep
,
costWrongChange
);
}
else
{
b
=
determineB
(
rate
,
1
-
accuracy
,
ttl
,
costWrongChange
,
costWrongKeep
);
}
SimpleQoIBasedImpactFunction
<
T
>
impactFunction
=
new
SimpleQoIBasedImpactFunction
<>(
pSimilarPointInformation
,
accuracy
);
Map
<
Object
,
Double
>
weight
=
new
HashMap
<>();
for
(
T
t
:
pSimilarPointInformation
)
{
double
impact
=
calculateImpact
(
1
-
accuracy
,
ttl
,
t
.
getDetectionDate
()
/
SCALING
,
b
,
maxTimestamp
/
SCALING
);
double
impact
=
impactFunction
.
calculateImpact
(
t
);
double
sumImpact
=
0
;
Object
currentValue
=
t
.
getValue
();
if
(
currentValue
instanceof
VectoralJamProperty
)
{
currentValue
=
((
VectoralJamProperty
)
currentValue
).
getMostProbableValue
();
}
...
...
@@ -167,7 +138,7 @@ public class TTLbasedCacheDecisionStrategy implements CacheDecisionStrategy {
}
}
maxTimestamp
=
-
1
;
long
maxTimestamp
=
-
1
;
T
maxFitting
=
null
;
for
(
T
t
:
pSimilarPointInformation
)
{
long
timestamp
=
t
.
getDetectionDate
();
...
...
@@ -176,28 +147,28 @@ public class TTLbasedCacheDecisionStrategy implements CacheDecisionStrategy {
if
(
currentValue
instanceof
VectoralProperty
)
{
currentValue
=
((
VectoralProperty
)
currentValue
).
getMostProbableValue
();
}
if
(
currentValue
.
equals
(
maxValue
)
&&
timestamp
>
maxTimestamp
)
{
maxTimestamp
=
timestamp
;
maxFitting
=
t
;
}
}
if
(
maxFitting
.
getValue
()
instanceof
VectoralProperty
)
{
VectoralProperty
vectoralProperty
=
((
VectoralProperty
)
maxFitting
.
getValue
()).
clone
();
double
[]
valueProbabilities
=
vectoralProperty
.
getValueProbabilities
();
Arrays
.
fill
(
valueProbabilities
,
0
);
double
sum
=
0
;
for
(
Object
key
:
weight
.
keySet
())
{
valueProbabilities
[
vectoralProperty
.
getIndexForValue
(
key
)]
=
weight
.
get
(
key
);
sum
+=
weight
.
get
(
key
);
}
for
(
int
i
=
0
;
i
<
valueProbabilities
.
length
;
i
++)
{
valueProbabilities
[
i
]
/=
sum
;
}
RoadInformation
roadInformation
=
new
RoadInformation
(
vectoralProperty
);
roadInformation
.
copyAttributes
((
RoadInformation
)
maxFitting
);
maxFitting
=
(
T
)
roadInformation
;
...
...
@@ -207,7 +178,7 @@ public class TTLbasedCacheDecisionStrategy implements CacheDecisionStrategy {
return
maxFitting
;
}
else
{
maxTimestamp
=
-
1
;
long
maxTimestamp
=
-
1
;
T
maxFitting
=
null
;
for
(
T
t
:
pSimilarPointInformation
)
{
long
timestamp
=
(
long
)
t
.
getAttribute
(
AvailableInformationAttributes
.
TTL
);
...
...
@@ -223,140 +194,4 @@ public class TTLbasedCacheDecisionStrategy implements CacheDecisionStrategy {
return
maxFitting
;
}
}
public
double
calculateImpact
(
double
errorProbability
,
long
ttl
,
long
time
,
double
b
,
long
maxTimestamp
)
{
long
age
=
maxTimestamp
-
time
;
if
(
errorProbability
==
0
)
{
if
(
time
==
maxTimestamp
)
{
return
1
;
}
else
{
return
0
;
}
}
else
if
(
errorProbability
==
1
)
{
return
1
;
}
else
if
(
errorProbability
==
0.5
)
{
return
(
errorProbability
-
1
)
/
ttl
*
age
+
errorProbability
;
}
else
if
(
b
==
Double
.
NEGATIVE_INFINITY
)
{
if
(
time
==
maxTimestamp
)
{
return
1
;
}
else
{
return
0
;
}
}
return
(
1
-
errorProbability
)
*
(
Math
.
exp
(
b
*
age
)
-
Math
.
exp
(
b
*
ttl
))
/
(
1
-
Math
.
exp
(
b
*
ttl
));
}
public
double
getChangeProbability
(
long
ttl
)
{
return
1
-
Math
.
pow
(
0.5
,
1
/
(
double
)
ttl
);
}
public
int
getOptimalMessageAmountForSwitch
(
double
changeProbability
,
double
errorProbability
,
double
costSlow
,
double
costFast
)
{
return
(
int
)
Math
.
round
(
Math
.
log
(-
changeProbability
/
Math
.
log
(
errorProbability
)
*
costSlow
/
costFast
)
/
Math
.
log
(
errorProbability
));
}
public
double
determineB
(
double
rate
,
double
errorProbability
,
long
ttl
,
double
costSlow
,
double
costFast
)
{
return
determineB
(
rate
,
errorProbability
,
ttl
,
costSlow
,
costFast
,
1
);
}
public
double
determineB
(
double
rate
,
double
errorProbability
,
long
ttl
,
double
costSlow
,
double
costFast
,
int
reversed
)
{
if
(
errorProbability
==
0
||
errorProbability
==
1
||
errorProbability
==
0.5
)
{
return
Double
.
NaN
;
}
double
b
;
double
p_c
=
getChangeProbability
((
long
)
(
ttl
/
rate
));
int
optimalAmount
=
getOptimalMessageAmountForSwitch
(
p_c
,
errorProbability
,
costSlow
,
costFast
);
if
(
optimalAmount
==
1
)
{
return
Double
.
NEGATIVE_INFINITY
;
}
boolean
first
=
true
;
double
leftSide
;
double
rightSide
;
double
step
=
5
;
if
(
errorProbability
<
0.5
)
{
b
=
-
2
*
step
*
reversed
;
}
else
{
b
=
2
*
step
*
reversed
;
}
int
similar
=
0
;
double
lastDifference
=
-
1
;
do
{
leftSide
=
calculateWeightingForOldState
(
optimalAmount
,
rate
,
errorProbability
,
ttl
,
b
);
rightSide
=
calculateWeightingForNewState
(
optimalAmount
,
rate
,
errorProbability
,
ttl
,
b
);
if
(
Math
.
abs
(
Math
.
round
((
rightSide
-
leftSide
)
*
ACCURACY_FACTOR
))
==
lastDifference
)
{
similar
++;
}
else
{
lastDifference
=
Math
.
abs
(
Math
.
round
((
rightSide
-
leftSide
)
*
ACCURACY_FACTOR
));
similar
=
0
;
}
if
(
Double
.
isNaN
(
leftSide
)
||
Double
.
isNaN
(
rightSide
)
||
similar
>
100
)
{
if
(
reversed
!=
-
1
)
{
double
determineB
=
determineB
(
rate
,
errorProbability
,
ttl
,
costSlow
,
costFast
,
-
1
);
if
(!
Double
.
isNaN
(
determineB
))
{
return
determineB
;
}
else
{
return
b
;
}
}
else
{
return
Double
.
NaN
;
}
}
leftSide
=
Math
.
round
(
leftSide
*
ACCURACY_FACTOR
);
rightSide
=
Math
.
round
(
rightSide
*
ACCURACY_FACTOR
);
if
(
leftSide
>
rightSide
)
{
if
(
b
<
0
)
{
b
-=
step
;
if
(!
first
)
{
step
*=
0.5
;
}
}
else
{
b
-=
step
;
step
*=
0.5
;
first
=
false
;
}
}
else
if
(
leftSide
<
rightSide
)
{
if
(
b
>
0
)
{
b
+=
step
;
if
(!
first
)
{
step
*=
0.5
;
}
}
else
{
b
+=
step
;
step
*=
0.5
;
first
=
false
;
}
}
else
{
break
;
}
}
while
(
true
);
return
b
;
}
public
double
calculateWeightingForOldState
(
int
optimalMessageAmount
,
double
rate
,
double
errorProbability
,
long
ttl
,
double
b
)
{
double
impact
=
0
;
for
(
int
a
=
optimalMessageAmount
;
a
<
Math
.
max
(
Math
.
floor
(
ttl
/
rate
),
optimalMessageAmount
+
2
);
a
++)
{
impact
+=
calculateImpact
(
errorProbability
,
ttl
,
Time
.
getCurrentTime
()
/
SCALING
-
(
long
)
Math
.
floor
(
a
*
rate
),
b
,
Time
.
getCurrentTime
()
/
SCALING
);
}
return
impact
;
}
public
double
calculateWeightingForNewState
(
int
optimalMessageAmount
,
double
rate
,
double
errorProbability
,
long
ttl
,
double
b
)
{
double
impact
=
0
;
for
(
int
a
=
0
;
a
<
optimalMessageAmount
;
a
++)
{
impact
+=
calculateImpact
(
errorProbability
,
ttl
,
Time
.
getCurrentTime
()
/
SCALING
-
(
long
)
Math
.
floor
(
a
*
rate
),
b
,
Time
.
getCurrentTime
()
/
SCALING
);
}
return
impact
;
}
}
src/de/tud/kom/p2psim/impl/vehicular/caching/decision/TTLbasedVectoralCacheDecisionStrategy.java
View file @
c911a273
...
...
@@ -21,7 +21,6 @@
package
de.tud.kom.p2psim.impl.vehicular.caching.decision
;
import
java.util.ArrayList
;
import
java.util.Arrays
;
import
java.util.Collections
;
import
java.util.Comparator
;
import
java.util.List
;
...
...
@@ -31,20 +30,15 @@ import java.util.Map.Entry;
import
de.tudarmstadt.maki.simonstrator.api.Time
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.TemporalDependencyMatrix
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.VectoralProperty
;
import
de.tudarmstadt.maki.simonstrator.api.component.sensor.environment.data.measurement.MeasurementDistributionTypeContainer
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.caching.decision.CacheDecisionStrategy
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.AvailableInformationAttributes
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.PointInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.information.RoadInformation
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.r
oadnetwork.RoadNetworkEdge
;
import
de.tudarmstadt.maki.simonstrator.api.component.vehicular.r
elevance.impl.VectoralQoIBasedImpactFunction
;
public
class
TTLbasedVectoralCacheDecisionStrategy
implements
CacheDecisionStrategy
{
private
static
final
long
SCALING
=
Time
.
SECOND
;
private
static
final
double
ACCURACY_FACTOR
=
100000
;
private
static
final
double
MIN_STEP
=
0.00001
;
private
double
accuracy
=
1
;
private
double
costWrongKeep
=
1
;
...
...
@@ -87,14 +81,14 @@ public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrat
}
else
if
(
pSimilarPointInformation
.
size
()
==
0
)
{
return
null
;
}
Collections
.
sort
(
pSimilarPointInformation
,
new
Comparator
<
T
>()
{
@Override
public
int
compare
(
T
pArg0
,
T
pArg1
)
{
return
Long
.
compare
(
pArg0
.
getDetectionDate
(),
pArg1
.
getDetectionDate
());
}
});
long
minTimestamp
=
Long
.
MAX_VALUE
;
...
...
@@ -104,9 +98,9 @@ public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrat
value
=
((
VectoralProperty
)
value
).
getMostProbableIndex
();
}
boolean
differentValue
=
false
;
List
<
Integer
>
possibleValues
=
new
ArrayList
<>();
for
(
T
t
:
pSimilarPointInformation
)
{
if
(!
t
.
hasAttribute
(
AvailableInformationAttributes
.
TTL
))
{
throw
new
AssertionError
(
"Unable to perform TTL-based majority voting witout TTL"
);
...
...
@@ -124,11 +118,11 @@ public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrat
if
(
currentValue
instanceof
VectoralProperty
)
{
VectoralProperty
currentProperty
=
(
VectoralProperty
)
currentValue
;
currentValue
=
currentProperty
.
getMostProbableIndex
();
if
(!
value
.
equals
(
currentValue
))
{
differentValue
=
true
;
}
for
(
int
i
=
0
;
i
<
currentProperty
.
getValueProbabilities
().
length
;
i
++)
{
if
(!
possibleValues
.
contains
(
i
))
{
possibleValues
.
add
(
i
);
...
...
@@ -136,53 +130,21 @@ public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrat
}
}
}
if
(
differentValue
)
{
long
difference
=
maxTimestamp
-
minTimestamp
;
if
(
difference
==
0
)
{
return
pSimilarPointInformation
.
get
(
pSimilarPointInformation
.
size
()
-
1
);
}
double
rate
=
difference
/
((
double
)
(
pSimilarPointInformation
.
size
()
-
1
)
*
SCALING
);
long
ttl
=
getTTL
(
pSimilarPointInformation
.
get
(
0
));
double
numberOfMessages
=
ttl
/
rate
+
1
;
if
(
differentValue
)
{
VectoralProperty
currentProperty
=
null
;
List
<
Double
>
bValues
=
new
ArrayList
<>();
double
b
;
for
(
Integer
possibleValue
:
possibleValues
)
{
double
temp
=
determineB
((
VectoralProperty
)
pSimilarPointInformation
.
get
(
0
).
getValue
(),
((
RoadInformation
)
pSimilarPointInformation
.
get
(
0
)).
getEdge
(),
possibleValue
,
getChangeRate
(
pSimilarPointInformation
.
get
(
0
),
rate
),
rate
,
1
-
accuracy
,
numberOfMessages
,
costWrongKeep
,
costWrongChange
);
if
(!
Double
.
isNaN
(
temp
))
{
bValues
.
add
(
temp
);
}
}
Collections
.
sort
(
bValues
);
if
(
bValues
.
size
()
>
0
)
{
if
(
bValues
.
size
()
%
2
==
0
)
{
b
=
(
bValues
.
get
(
bValues
.
size
()
/
2
)
+
bValues
.
get
(
bValues
.
size
()
/
2
-
1
))
/
2.0
;
}
else
{
b
=
bValues
.
get
(
bValues
.
size
()
/
2
);
}
}
else
{
b
=
Double
.
NEGATIVE_INFINITY
;
}
int
count
=
0
;
VectoralQoIBasedImpactFunction
<
T
>
impactFunction
=
new
VectoralQoIBasedImpactFunction
<>(
pSimilarPointInformation
,
accuracy
,
_lastDecision
);
for
(
T
t
:
pSimilarPointInformation
)
{
RoadInformation
roadInformation
=
((
RoadInformation
)
t
);
VectoralProperty
property
=
(
VectoralProperty
)
roadInformation
.
getValue
();
double
impact
=
calculateImpact
(
1
-
accuracy
,
numberOfMessages
,
(((
t
.
getDetectionDate
()
-
maxTimestamp
)
/
SCALING
+
ttl
)
/
(
double
)
ttl
)
*
numberOfMessages
,
b
)
/
(
accuracy
);
double
impact
=
impactFunction
.
calculateImpact
(
t
);
TemporalDependencyMatrix
dependencyMatrix
=
property
.
getDependencyMatrix
();
dependencyMatrix
=
modifyDependencyMatrix
(
dependencyMatrix
.
age
((
maxTimestamp
-
property
.
getDetectionDate
())
/
SCALING
),
impact
);
VectoralProperty
agedProperty
=
property
.
age
(
1
,
dependencyMatrix
);
if
(
currentProperty
!=
null
)
{
currentProperty
=
currentProperty
.
combine
(
agedProperty
);
...
...
@@ -190,17 +152,17 @@ public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrat
currentProperty
=
agedProperty
;
}
}
if
(
Double
.
isNaN
(
currentProperty
.
getValueProbabilities
()[
0
]))
{
return
pSimilarPointInformation
.
get
(
pSimilarPointInformation
.
size
()
-
1
);
}
RoadInformation
roadInformation
=
new
RoadInformation
(
currentProperty
);
copyAttributes
((
RoadInformation
)
pSimilarPointInformation
.
get
(
0
),
roadInformation
);
_lastDecision
=
roadInformation
.
getValue
();
return
(
T
)
roadInformation
;
}
else
{
maxTimestamp
=
-
1
;
...
...
@@ -220,36 +182,6 @@ public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrat
}
}
/**
* @param pT
* @return
*/
private
<
T
extends
PointInformation
>
double
getAccuracy
(
T
pT
)
{
// if (pT instanceof RoadInformation) {
// RoadInformation roadInformation = ((RoadInformation) pT);
// VectoralProperty property = (VectoralProperty) roadInformation.getValue();
// double accuracy = property.getProbabilityForIndex(property.getMostProbableIndex());
// return accuracy;
// }
return
this
.
accuracy
;
}
private
<
T
extends
PointInformation
>
double
getChangeRate
(
T
pT
,
double
pRate
)
{
// if (pT instanceof RoadInformation) {
// RoadInformation roadInformation = ((RoadInformation) pT);
// VectoralProperty property = (VectoralProperty) roadInformation.getValue();
//
// TemporalDependencyMatrix dependencyMatrix = property.getDependencyMatrix();
// return 1 - Math.pow(1 - dependencyMatrix.getChangeProbability(0), pRate * (SCALING / Time.SECOND));
// }
return
getChangeProbability
((
long
)
(
getTTL
(
pT
)
/
pRate
));
}
public
<
T
extends
PointInformation
>
long
getTTL
(
T
pT
)
{
return
(
long
)
pT
.
getAttribute
(
AvailableInformationAttributes
.
TTL
)
/
SCALING
;
}
/**
* @param pT
* @param pRoadInformation
...
...
@@ -263,187 +195,17 @@ public class TTLbasedVectoralCacheDecisionStrategy implements CacheDecisionStrat
private
TemporalDependencyMatrix
modifyDependencyMatrix
(
TemporalDependencyMatrix
pDependencyMatrix
,
double
pImpact
)
{
TemporalDependencyMatrix
result
=
pDependencyMatrix
.
clone
();
double
[][]
dependencies
=
result
.
getDependencies
();
for
(
int
i
=
0
;
i
<
dependencies
.
length
;
i
++)
{
double
finalPercentages
=
1.0
/
dependencies
[
i
].
length
;
for
(
int
j
=
0
;
j
<
dependencies
[
i
].
length
;
j
++)
{
dependencies
[
i
][
j
]
=
finalPercentages
+
(
pDependencyMatrix
.
getDependencies
()[
i
][
j
]
-
finalPercentages
)
*
pImpact
;
}
}
return
result
;
}
public
double
calculateImpact
(
double
errorProbability
,
double
pNumberOfMessages
,
double
pMessageNumber
,
double
b
)
{
double
age
=
pNumberOfMessages
-
pMessageNumber
;
if
(
errorProbability
==
0
)
{
if
(
pMessageNumber
==
pNumberOfMessages
)
{
return
1
;
}
else
{
return
0
;
}
}
else
if
(
errorProbability
==
1
)
{
return
1
;
}
else
if
(
errorProbability
==
0.5
||
b
==
0
)
{
return
(
1
-
errorProbability
)
/
pNumberOfMessages
*
age
+
errorProbability
;
}
else
if
(
b
==
Double
.
NEGATIVE_INFINITY
)
{
if
(
pMessageNumber
==
pNumberOfMessages
)
{
return
1
;
}
else
{
return
0
;
}
}
return
(
1
-
errorProbability
)
*
(
Math
.
exp
(
b
*
age
)
-
Math
.
exp
(
b
*
pNumberOfMessages
))
/
(
1
-
Math
.
exp
(
b
*
pNumberOfMessages
));
}
public
double
getChangeProbability
(
long
ttl
)
{
return
1
-
Math
.
pow
(
0.5
,
1
/
(
double
)
ttl
);
}
public
int
getOptimalMessageAmountForSwitch
(
double
changeProbability
,
double
errorProbability
,
double
costSlow
,
double
costFast
)
{
return
(
int
)
Math
.
round
(
Math
.
log
(-
changeProbability
/
Math
.
log
(
errorProbability
)
*
costSlow
/
costFast
)
/
Math
.
log
(
errorProbability
));
}
public
double
determineB
(
VectoralProperty
pTemplate
,
RoadNetworkEdge
pRoadNetworkEdge
,
int
pPossibleValue
,
double
change
,
double
rate
,
double
errorProbability
,
double
pNumberOfMessages
,
double
costSlow
,
double
costFast
)
{
if
(
errorProbability
==
0
||
errorProbability
==
1
||
errorProbability
==
0.5
)
{
return
Double
.
NaN
;
}
if
(
_lastDecision
!=
null
)
{
if
(
pPossibleValue
==
((
VectoralProperty
)
_lastDecision
).
getMostProbableIndex
())
{
return
Double
.
NaN
;
}
}
else
{
if
(
pPossibleValue
==
pTemplate
.
getDefaultIndex
())
{
return
Double
.
NaN
;
}
}
double
b
;
double
p_c
=
change
;
int
optimalAmount
=
getOptimalMessageAmountForSwitch
(
p_c
,
errorProbability
,
costSlow
,
costFast
);
if
((
int
)
pNumberOfMessages
<=
optimalAmount
)
{
return
Double
.
POSITIVE_INFINITY
;
}
if
(
optimalAmount
==
1
)
{
return
Double
.
NEGATIVE_INFINITY
;
}
boolean
first
=
true
;
double
step
=
10
;
if
(
errorProbability
<
0.5
)
{
b
=
-
1
*
step
;
}
else
{
b
=
1
*
step
;
}
do
{
VectoralProperty
valueAfterN
=
calculateMostProbable
(
pTemplate
,
pRoadNetworkEdge
,
pPossibleValue
,
optimalAmount
,
rate
,
errorProbability
,
pNumberOfMessages
,
b
);
double
probableValueAfterN
=
Double
.
NaN
;
if
(
valueAfterN
!=
null
)
{
probableValueAfterN
=
valueAfterN
.
getMostProbableIndex
();
}
VectoralProperty
valueBeforeN
=
calculateMostProbable
(
pTemplate
,
pRoadNetworkEdge
,
pPossibleValue
,
optimalAmount
-
1
,
rate
,
errorProbability
,
pNumberOfMessages
,
b
);
double
probableValueBeforeN
=
Double
.
NaN
;
if
(
valueBeforeN
!=
null
)
{
probableValueBeforeN
=
valueBeforeN
.
getMostProbableIndex
();
}
if
(
probableValueAfterN
==
pPossibleValue
&&
probableValueAfterN
!=
probableValueBeforeN
)
{
return
b
;
}
if
(!
Double
.
isNaN
(
probableValueBeforeN
)
&&
!
Double
.
isNaN
(
probableValueBeforeN
)
&&
step
>=
MIN_STEP
)
{
if
(
probableValueAfterN
!=
pPossibleValue
)
{
if
(
b
<
0
)
{
b
-=
step
;
if
(!
first
)
{
step
*=
0.5
;
}
}
else
{
b
-=
step
;
step
*=
0.5
;
first
=
false
;
}
}
else
if
(
probableValueAfterN
==
pPossibleValue
&&
probableValueAfterN
==
probableValueBeforeN
)
{
if
(
b
>
0
)
{
b
+=
step
;
if
(!
first
)
{
step
*=
0.5
;
}
}
else
{
b
+=
step
;
step
*=
0.5
;
first
=
false
;
}
}
else
{
return
Double
.
NaN
;
}
}
else
{
return
Double
.
NaN
;
}
}
while
(
true
);
return
result
;
}
public
VectoralProperty
calculateMostProbable
(
VectoralProperty
pTemplate
,
RoadNetworkEdge
pRoadNetworkEdge
,
int
pNewValue
,
int
optimalMessageAmount
,
double
rate
,
double
errorProbability
,
double
pNumberOfMessages
,
double
b
)
{
VectoralProperty
currentProperty
=
null
;
for
(
int
a
=
optimalMessageAmount
+
1
;
a
<=
pNumberOfMessages
;
a
++)
{
VectoralProperty
jamProperty
=
pTemplate
.
clone
();
if
(
_lastDecision
!=
null
)
{
jamProperty
.
set
(((
VectoralProperty
)
_lastDecision
).
getMostProbableIndex
(),
accuracy
,
MeasurementDistributionTypeContainer
.
getDistribution
(
pTemplate
.
getClass
()));
}
else
{
jamProperty
.
set
(
pTemplate
.
getDefaultIndex
(),
accuracy
,
MeasurementDistributionTypeContainer
.
getDistribution
(
pTemplate
.
getClass
()));
}
TemporalDependencyMatrix
temporalDependencyMatrix
=
jamProperty
.
getDependencyMatrix
();
temporalDependencyMatrix
=
temporalDependencyMatrix
.
age
((
long
)
(
a
*
rate
));
double
impact
=
calculateImpact
(
errorProbability
,
pNumberOfMessages
,
pNumberOfMessages
-
a
,
b
);
if
(
Double
.
isNaN
(
impact
))
{
return
null
;
}
temporalDependencyMatrix
=
modifyDependencyMatrix
(
temporalDependencyMatrix
,
impact
);
jamProperty
=
(
VectoralProperty
)
jamProperty
.
age
(
1
,
temporalDependencyMatrix
);
if
(
currentProperty
!=
null
)
{
currentProperty
=
(
VectoralProperty
)
currentProperty
.
combine
(
jamProperty
);
}
else
{
currentProperty
=
jamProperty
;
}
}
for
(
int
a
=
0
;
a
<=
optimalMessageAmount
;
a
++)
{
VectoralProperty
jamProperty
=
pTemplate
.
clone
();
jamProperty
.
setGaussianWithAccuracy
(
pNewValue
,
accuracy
);
TemporalDependencyMatrix
temporalDependencyMatrix
=
jamProperty
.
getDependencyMatrix
();
temporalDependencyMatrix
=
temporalDependencyMatrix
.
age
((
long
)
(
a
*
rate
));
double
impact
=
calculateImpact
(
errorProbability
,
pNumberOfMessages
,
pNumberOfMessages
-
a
,
b
);
if
(
Double
.
isNaN
(
impact
))
{
return
null
;
}
temporalDependencyMatrix
=
modifyDependencyMatrix
(
temporalDependencyMatrix
,
impact
);
jamProperty
=
(
VectoralProperty
)
jamProperty
.
age
(
1
,
temporalDependencyMatrix
);
if
(
currentProperty
!=
null
)
{
currentProperty
=
(
VectoralProperty
)
currentProperty
.
combine
(
jamProperty
);
}
else
{
currentProperty
=
jamProperty
;
}
}
return
currentProperty
;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment