LogDistancePropagationLossModel.java 3.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * Copyright (c) 2005-2010 KOM – Multimedia Communications Lab
 *
 * This file is part of PeerfactSim.KOM.
 * 
 * PeerfactSim.KOM is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 * 
 * PeerfactSim.KOM is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with PeerfactSim.KOM.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

package de.tud.kom.p2psim.impl.topology.views.wifi.phy.propagation.loss;

import de.tud.kom.p2psim.api.topology.views.wifi.phy.PropagationLossModel;
24
import de.tudarmstadt.maki.simonstrator.api.component.sensor.location.Location;
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

/**
 * 
 * 
 * The formula is:
 * <p>
 * rx = tx - Pr0 - 10 * n * log (d/d0)
 * <p>
 * Pr0: rx power at reference distance d0 (dBm) <br>
 * d0: reference distance: 1.0 (m) <br>
 * d: distance (m) <br>
 * n: the path loss exponent <br>
 * tx: tx power (dBm) <br>
 * rx: rx power (dBm)
 * 
 * 
 * This class based on NS3 (src/propagation/model/propagation-loss-model.cc) by
 * Mathieu Lacage <mathieu.lacage@sophia.inria.fr> and further extended by
 * Christoph Muenker.
 * 
 * @version 1.0, 28.02.2013
 */
public class LogDistancePropagationLossModel extends PropagationLossModel {

	/**
	 * Exponent of the path loss propagation Model. In
	 * "Wireless Communications - Principles and Practices" from Theodore S.
	 * Rappaport different exponents are introduced. To model the propagation
	 * loss of an urban area cellular radio, a value between 2.7 and 3.5 should
	 * be chosen.
	 */
	private double exponent = 3.2;

	/**
	 * The reference distance of the referenceLoss
	 */
	private double referenceDistance = 1;

	/**
	 * Frequency in Hz<br>
	 * Default 2,4 GHz
	 */
	private long frequency = 2400000000l;

	/**
	 * The wavelength
	 */
	private double lambda = ((double) lightspeed) / frequency;

	/**
	 * The reference Loss
	 */
	private double referenceLoss = 20 * Math.log10(4 * Math.PI
			* referenceDistance / lambda);

	@Override
81
82
	public double getRxPowerDbm(double txPowerDbm, Location a, Location b) {
		double distance = a.distanceTo(b);
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
		return getRxPowerDbm(txPowerDbm, distance);
	}

	@Override
	public double getRxPowerDbm(double txPowerDbm, double distance) {
		if (distance <= referenceDistance) {
			return txPowerDbm;
		}
		double pathLoss = 10 * exponent
				* Math.log10(distance / referenceDistance);

		double rxc = -this.referenceLoss - pathLoss;
		return txPowerDbm + rxc;
	}

	@Override
	public double getDistance(double txPowerDbm, double rxPowerDbm) {
		return Math.pow(10, (rxPowerDbm - txPowerDbm + referenceLoss)
				/ (-10 * exponent))
				/ referenceDistance;
	}

	@Override
	public void setFrequency(long frequency) {
		this.frequency = frequency;
		updatePreComputation();
	}

	public void setReferenceDistance(double referenceDistance) {
		this.referenceDistance = referenceDistance;
		updatePreComputation();
	}

	public void setExponent(double exponent) {
		this.exponent = exponent;
	}

	public double getExponent() {
		return exponent;
	}

	/**
	 * The lamba and the referenceLoss is depending of the frequency and the
	 * referenceDistance. If one of this values changed, then should be updated
	 * the pre computed values.
	 */
	private void updatePreComputation() {
		this.lambda = ((double) lightspeed) / frequency;
		this.referenceLoss = 20 * Math.log10(4 * Math.PI * referenceDistance
				/ lambda);
	}
}